In this study, a porous reduced graphene oxide (PRGO) carbon nanomaterial was successfully obtained by activation of natural graphite with KOH at high temperature and was applied as an auxiliary electrode in soil electrokinetic remediation to investigate the promoting effect on Cd migration. We found that PRGO contained a large amount of oxygen-containing groups (hydroxyl and carboxyl groups) and exhibited high Cd adsorption efficiency at pH values above 4, achieving a maximum adsorption capacity of 434.78 mg/g for Cd. In addition, PRGO could selectively adsorb Cd, Pb, Cu, and Zn but not K, Na, or Mg from soil solution. The electrokinetic remediation experiment showed that the PRGO auxiliary electrode promoted the migration of Cd and effectively controlled the increase in soil pH near the cathode, possibly due to ion exchange between the surface functional groups on the auxiliary electrode and Cd. In addition, the location of the PRGO auxiliary electrode strongly influenced the migration of Cd. For instance, the soil Cd concentration of treatment H-5 was 57.86% lower than that of H-0 at a distance of 5-10 cm from the electrode; however, the soil Cd concentration measured at 0-5 cm for treatment H-5 was 34.84% higher than that of treatment H-0. Our study demonstrated that PRGO could be applied as an auxiliary electrode to promote Cd migration during electrokinetic remediation of Cd-contaminated soil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.127441 | DOI Listing |
Mikrochim Acta
December 2024
Key Laboratory for Analytical Science of Food Safety and Biology, MOE, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
A triple signal amplified electrochemical aptasensor for the detection of bisphenol A (BPA) was developed for the first time based on gold nanoparticles (AuNPs), hemin/G-quadruplex DNAzyme, and exonuclease I (Exo I) assisted amplification strategies. The BPA aptamer (Apt) hybridized with the capture probe (CP) was fixed on the gold electrode (GE) to form the double-stranded DNA (dsDNA) structure. When BPA was present, the Apt was detached from the GE surface by specific recognition between the BPA and Apt, forming BPA-Apt complexes in solution.
View Article and Find Full Text PDFPhotoacoustics
February 2025
Department of Biomedical Engineering, Tufts University, Medford, MA, United States.
Depth-dependent fluence-compensation in photoacoustic (PA) imaging is paramount for accurate quantification of chromophores from deep tissues. Here we present a user-friendly toolkit named PHANTOM (PHotoacoustic ANnotation TOolkit for MATLAB) that includes a graphical interface and assists in the segmentation of ultrasound-guided PA images. We modelled the light source configuration with Monte Carlo eXtreme and utilized 3D segmented tissues from ultrasound to generate fluence maps to depth compensate PA images.
View Article and Find Full Text PDFBioelectrochemistry
December 2024
Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Faculty of Medicine, Wuhan University of Science and Technology, Wuhan 430065, PR China. Electronic address:
Dalton Trans
November 2024
School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China.
Zinc-ion batteries (ZIBs) are promising on account of the inherent safety, minimal toxicity, cost-effectiveness, and high theoretical capacity. However, the critical issues including the Zn dendrites and side reactions impede their commercial application. Here, we propose green, non-toxic and biological carrageenan (Carr) serving as an electrolyte additive to address the aforementioned issues.
View Article and Find Full Text PDFBiosens Bioelectron
February 2025
College of Electronics and Information, Qingdao University, Qingdao, 266071, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!