Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The connected environment provides surrounding traffic information to drivers via different driving aids that are expected to improve driving behavior and assist in avoiding safety-critical events. These driving aids include speed advisory, car-following assistance, lane-changing support, and advanced information about possible unseen hazards, among many others. While various studies have attempted to examine the effectiveness of different driving aids discretely, it is still vague how drivers perform when they are exposed to a connected environment with vehicle-to-vehicle and vehicle-to-infrastructure communication capabilities. As such, the objective of this study is to examine the effects of the connected environment on driving behavior and safety. To achieve this aim, an innovative driving simulator experiment was designed to mimic a connected environment using the CARRS-Q Advanced Driving Simulator. Two types of driving aids were disseminated in the connected environment: continuous and event-based information. Seventy-eight participants with diverse backgrounds drove the simulator in four driving conditions: baseline (without driving aids), perfect communication (uninterrupted supply of driving aids), communication delay (driving aids are delayed), and communication loss (intermittent loss of driving aids). Various key driving behavior indicators were analyzed and compared across various routine driving tasks such as car-following, lane-changing, interactions with traffic lights, and giving way to pedestrians at pedestrian crossings. Results suggest that drivers in the perfect communication scenario maintain a longer time-to-collision during car-following, a longer time-to-collision to pedestrian, a lower deceleration to avoid a crash during lane-changing, and a lower propensity of yellow light running. Overall, drivers in the connected environment are found to make informed (thus better) decisions towards safe driving.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aap.2020.105643 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!