Disulfide bonds prevent aggregation of globular proteins by stabilizing the native state. However, a disulfide bond within a disordered state may accelerate amyloidogenic nucleation by navigating fluctuating polypeptide chains towards an orderly assembly of β-sheets. Here, the self-assembly behavior of Glu-Cys-(Glu)-Cys-Glu peptide (EC), in which an intrachain disulfide bond is engineered into an amyloidogenic homopolypeptide motif, is investigated. To this end, the Thioflavin T (ThT) fluorescence kinetic assay is combined with infrared spectroscopy, circular dichroism (CD), atomic force microscopy (AFM) and Raman scattering measurements. Regardless of whether the disulfide bond is intact or reduced, EC monomers remain disordered within a broad range of pH. On the other hand, only reduced EC self-assembles into amyloid fibrils with the unique infrared traits indicative of three-center hydrogen bonds involving main-chain carbonyl as a bifurcating acceptor and main-chain NH and side-chain -COOH groups as hydrogen donors: the bonding pattern observed in so-called β-fibrils. AFM analysis of β-EC reveals tightly packed rectangular superstructures whose presence coincides with strong chiroptical properties. Our findings suggest that formation of chiral amyloid superstructures may be a generic process accessible to various substrates, and that the fully extended conformation of a poly-Glu chain is a condition sine qua non for self-assembly of β-fibrils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2020.06.221 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!