SmbHLH53 is relevant to jasmonate signaling and plays dual roles in regulating the genes for enzymes in the pathway for salvianolic acid B biosynthesis in Salvia miltiorrhiza.

Gene

National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, 710062 Xi'an, China. Electronic address:

Published: September 2020

Basic helix-loop-helix (bHLH) transcription factors play essential roles in myriad regulatory processes, including secondary metabolism. In this study with Salvia miltiorrhiza, we isolated and characterized SmbHLH53, which encodes a bHLH family member. Expression of this gene was significantly induced by wounding and multiple hormones, including methyl jasmonic acid; transcript levels were highest in the leaves and roots. Phylogenetic analysis indicated that SmbHLH53 clusters withAtbHLH17 and AtbHLH13, two negative regulators of jasmonate (JA) responses, and is localized in the nucleus and cell membrane. Yeast two-hybrid and bimolecular fluorescent complementation assays indicated that SmbHLH53 forms a homodimer as well as a heterodimer with SmbHLH37. It also interacts with both SmJAZs1/3/8 and SmMYC2, the core members of the JA signal pathway. Unexpectedly, we noted that overexpression of SmbHLH53 did not significantly influence the concentrations of rosmarinic acid and salvianolic acid B in transgenic plants. Results from yeast one-hybrid assays showed that SmbHLH53 binds to the promoters of SmTAT1, SmPAL1, and Sm4CL9, the key genes for enzymes in the pathway for phenolic acid synthesis. Assays of transient transcriptional activity demonstrated that SmbHLH53 represses the promoter of SmTAT1 while activating the promoter of Sm4CL9. Thus, the present work revealed that SmbHLH53 may play dual roles in regulating the genes for enzymes in the pathway for Sal B biosynthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2020.144920DOI Listing

Publication Analysis

Top Keywords

genes enzymes
12
enzymes pathway
12
smbhlh53
8
dual roles
8
roles regulating
8
regulating genes
8
salvianolic acid
8
salvia miltiorrhiza
8
indicated smbhlh53
8
acid
5

Similar Publications

Migration characteristics and toxic effects of perfluorooctane sulfonate and perfluorobutane sulfonate in tobacco.

Sci Total Environ

January 2025

National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China. Electronic address:

Perfluorooctane sulfonate (PFOS) and its new substitute, perfluorobutane sulfonate (PFBS), are increasing in concentration in the environment annually, and their toxicity cannot be ignored. With an increasing amount of PFOS and PFBS entering the environment, especially into farmland soil, it is very likely to pollute tobacco-planting soil. Therefore, we chose tobacco (Nicotiana tabacum L.

View Article and Find Full Text PDF

Colorectal cancer (CRC) ranks third globally in cancer incidence and mortality, posing a significant human concern. Recent advancements in immunotherapy are noteworthy. This study explores immune modulation for CRC treatment.

View Article and Find Full Text PDF

Purpose: Less than 5% of GI stromal tumors (GISTs) are driven by the loss of the succinate dehydrogenase (SDH) complex, resulting in a pervasive DNA hypermethylation pattern that leads to unique clinical features. Advanced SDH-deficient GISTs are usually treated with the same therapies targeting KIT and PDGFRA receptors as those used in metastatic GIST. However, these treatments display less activity in the absence of alternative therapeutic options.

View Article and Find Full Text PDF

How mammalian herbivores evolve to feed on chemically defended plants remains poorly understood. In this study, we investigated the adaptation of two species of woodrats ( and ) to creosote bush (), a toxic shrub that expanded across the southwestern United States after the Last Glacial Maximum. We found that creosote-adapted woodrats have elevated gene dosage across multiple biotransformation enzyme families.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small, non-coding RNAs that regulate the expression level of the target genes in the cell. Breast cancer is responsible for the majority of cancer-related deaths among women globally. It has been proven that deregulated miRNAs may play an essential role in the progression of breast cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!