A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of chronic hyperoxia on the developmental time course of the hypoxic ventilatory response relative to other traits in rats. | LitMetric

Influence of chronic hyperoxia on the developmental time course of the hypoxic ventilatory response relative to other traits in rats.

Respir Physiol Neurobiol

Department of Biology, Bates College, Lewiston, ME, 04240, USA. Electronic address:

Published: September 2020

Newborn mammals exhibit a biphasic hypoxic ventilatory response (HVR) in which an initial increase in ventilation is followed by a decline back toward baseline levels. The magnitude of the secondary decline diminishes with postnatal age, but this transition occurs earlier in rat pups reared in moderate hyperoxia. This pattern is consistent with heterokairy, a form of developmental plasticity in which environmental factors alter the timing of developmental events. The present study investigated whether this plasticity is specific to the HVR or if hyperoxia instead accelerates overall development. Rat pups reared in 60 % O (Hyperoxia) exhibited a less biphasic ventilatory response to 12 % O than pups reared in 21 % O (Control) at 4 days of age (P4) and transitioned to a sustained HVR by P10-11; Control rats exhibited a biphasic HVR at both ages. However, the average ages at which pups attained other key developmental milestones (i.e., fur development at P5, incisor eruption at P9, and eye opening at P15) were similar between treatment groups. Moreover, growth rates and maturation of the metabolic response to cooling were not accelerated, and may have been delayed slightly, relative to Control rats. For example, the capacity for pups to increase their metabolic rate at low ambient temperatures increased with age, but this thermogenic capacity tended to be reduced in Hyperoxia pups at both P4 and P10-11 (i.e., lower CO production rates below the lower critical temperature). Collectively, these data support the conclusion that hyperoxia specifically advances the age at which rat pups exhibit a sustained HVR, altering the relative timing of developmental events rather than compressing the entire period of development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resp.2020.103483DOI Listing

Publication Analysis

Top Keywords

ventilatory response
12
rat pups
12
pups reared
12
hypoxic ventilatory
8
timing developmental
8
developmental events
8
exhibited biphasic
8
sustained hvr
8
control rats
8
pups
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!