Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Echocardiographers with specialized expertise sometimes perform myocardial perfusion imaging using U.S. Food and Drug Administration-approved microbubbles in an off-label capacity, correlating microbubble replenishment in the near field with blood flow through the myocardium. This study reports the in vivo clinical feasibility of a voltage-sensitive ultrasound enhancing agent (UEA) for myocardial perfusion imaging. Four UEAs were injected into Sprague-Dawley rats while ultrasound images were collected to quantify brightness in the left ventricular (LV) cavity, septal wall, and posterior wall in systole and diastole. Formulation IV, a phase change agent nested within a negatively charged phospholipid bilayer, increased the tissue-to-cavity ratio in both systole and diastole in the septal wall, 6 dB, and in the posterior wall, 5 dB, while leaving the LV cavity at baseline. This outcome improves the signal of the myocardium relative to the LV cavity and shows promise as a myocardial perfusion UEA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultrasmedbio.2020.05.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!