The bulk tissue RNA sequencing technique measures the average gene expression of potentially heterogeneous cellular subsets of human skin. However, single-cell RNA sequencing (scRNA-seq) enables both profiling of gene expression measurements at a single-cell resolution and identification of cellular heterogeneity. This recent technical advance has broadened the understanding of many aspects of skin biology, such as development, oncogenesis, and immunopathogenesis. However, due to the low number of mRNAs detectable in an individual cell and the alteration of transcriptomes during sample preparation, scRNA-seq data are often extremely noisy. Moreover, unstandardized methodologies for sample preparation, capturing, and bioinformatic analysis (e.g., batch correction or integration) hamper reliable inter-study comparisons. Nevertheless, sophisticated bioinformatic analysis and integrative omics-based approaches are making up for these limitations. Here, we discuss both the advantages and technical challenges of scRNA-seq, a promising tool opening new horizons in dermatological research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jdermsci.2020.06.002 | DOI Listing |
Environ Microbiol Rep
February 2025
Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato, Mexico.
The production of traditional agave spirits in Mexico, such as mezcal, involves a process that uses environmental microorganisms to ferment the cooked must from agave plants. By analysing these microorganisms, researchers can understand the dynamics of microbial communities at the interface of natural and human-associated environments. This study involved 16S and ITS amplicon sequencing of 99 fermentation tanks from 42 distilleries across Mexico.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.
Background: Bone-invasive Pituitary Neuroendocrine Tumors (BI PitNETs) epitomize an aggressive subtype of pituitary tumors characterized by bone invasion, culminating in extensive skull base bone destruction and fragmentation. This infiltration poses a significant surgical risk due to potential damage to vital nerves and arteries. However, the mechanisms underlying bone invasion caused by PitNETs remain elusive, and effective interventions for PitNET-induced bone invasion are lacking in clinical practice.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Department of Hepato-Biliary-Pancreatic Surgery, General Surgery, Huadong Hospital, Fudan University, Shanghai, 200040, PR China.
Purpose: Glucose starvation induces the accumulation of disulfides and F-actin collapse in cells with high expression of SLC7A11, a phenomenon termed disulfidptosis. This study aimed to confirm the existence of disulfidptosis in pancreatic ductal adenocarcinoma (PDAC) and elucidate the role of Cancer Susceptibility 8 (CASC8) in this process.
Methods: The existence of disulfidptosis in PDAC was assessed using flow cytometry and F-actin staining.
BMC Plant Biol
January 2025
State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China.
Background: RNA m6A methylation installed by RNA methyltransferases plays a crucial role in regulating plant growth and development and environmental stress responses. However, the underlying molecular mechanisms of m6A methylation involved in seed germination and stress responses are largely unknown. In the present study, we surveyed global m6A methylation in rice seed germination under salt stress and the control (no stress) using an osmta1 mutant and its wild type.
View Article and Find Full Text PDFBMC Microbiol
January 2025
State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.
Background: Streptococcus mutans is recognized as a key pathogen responsible for the development of dental caries. With the advancement of research on dental caries, the understanding of its pathogenic mechanism has gradually shifted from the theory of a single pathogenic bacterium to the theory of oral microecological imbalance. Acidogenic and aciduric microbial species are also recognized to participate in the initiation and progression of dental caries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!