Growth factors and their receptor tyrosine kinases (RTKs), a group of transmembrane molecules harboring cytoplasm-facing tyrosine-specific kinase functions, play essential roles in migration of multipotent cell populations and rapid proliferation of stem cells' descendants, transit amplifying cells, during embryogenesis and tissue repair. These intrinsic functions are aberrantly harnessed when cancer cells undergo intertwined phases of cell migration and proliferation during cancer progression. For example, by means of clonal expansion growth factors fixate the rarely occurring driver mutations, which initiate tumors. Likewise, autocrine and stromal growth factors propel angiogenesis and penetration into the newly sprouted vessels, which enable seeding micro-metastases at distant organs. We review genetic and other mechanisms that preempt ligand-mediated activation of RTKs, thereby supporting sustained cancer progression. The widespread occurrence of aberrant RTKs and downstream signaling pathways in cancer, identifies molecular targets suitable for pharmacological intervention. We list all clinically approved cancer drugs that specifically intercept oncogenic RTKs. These are mainly tyrosine kinase inhibitors and monoclonal antibodies, which can inhibit cancer but inevitably become progressively less effective due to adaptive rewiring processes or emergence of new mutations, processes we overview. Similarly important are patient treatments making use of radiation, chemotherapeutic agents and immune checkpoint inhibitors. The many interfaces linking RTK-targeted therapies and these systemic or local regimens are described in details because of the great promise offered by combining pharmacological modalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.acr.2020.04.002 | DOI Listing |
Purpose: Radiotherapy (RT)/cetuximab (C) demonstrated superiority over RT alone for locally advanced squamous head and neck cancer. We tested this in completely resected, intermediate-risk cancer.
Methods: Patients had squamous cell carcinoma of the head and neck (SCCHN) of the oral cavity, oropharynx, or larynx, with one or more risk factors warranting postoperative RT.
Sci Adv
January 2025
Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
Mitochondrial electron transport chain (ETC) function modulates macrophage biology; however, mechanisms underlying mitochondria ETC control of macrophage immune responses are not fully understood. Here, we report that mutant mice with mitochondria ETC complex III (CIII)-deficient macrophages exhibit increased susceptibility to influenza A virus (IAV) and LPS-induced endotoxic shock. Cultured bone marrow-derived macrophages (BMDMs) isolated from these mitochondria CIII-deficient mice released less IL-10 than controls following TLR3 or TLR4 stimulation.
View Article and Find Full Text PDFSci Adv
January 2025
School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
The cytokine interleukin-10 (IL-10) limits the immune response and promotes resolution of acute inflammation. Because of its immunosuppressive effects, IL-10 up-regulation is a common feature of tumor progression and metastasis. Recently, IL-10 regulation has been shown to depend on mitochondria and redox-sensitive signals.
View Article and Find Full Text PDFSci Adv
January 2025
Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
Although lipid-derived acetyl-coenzyme A (CoA) is a major carbon source for histone acetylation, the contribution of fatty acid β-oxidation (FAO) to this process remains poorly characterized. To investigate this, we generated mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1, distal FAO enzyme) knockout macrophages. C-carbon tracing confirmed reduced FA-derived carbon incorporation into histone H3, and RNA sequencing identified diminished interferon-stimulated gene expression in the absence of ACAT1.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea.
Until now, Hippo pathway-mediated nucleocytoplasmic translocation has been considered the primary mechanism by which yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) transcriptional coactivators regulate cell proliferation and differentiation via transcriptional enhanced associate domain (TEAD)-mediated target gene expression. In this study, however, we found that TAZ, but not YAP, is associated with the Golgi apparatus in macrophages activated via Toll-like receptor ligands during the resolution phase of inflammation. Golgi-associated TAZ enhanced vesicle trafficking and secretion of proinflammatory cytokines in M1 macrophage independent of the Hippo pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!