Evaluation of an autoencoder as a feature extraction tool for near-infrared spectroscopic discriminant analysis.

Food Chem

Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:

Published: November 2020

The utility of an autoencoder (AE) as a feature extraction tool for near-infrared (NIR) spectroscopy-based discrimination analysis has been explored and the discrimination of the geographic origins of 8 different agricultural products has been performed as the case study. The sample spectral features were broad and insufficient for component distinction due to considerable overlap of individual bands, so AE enabling of extracting the sample-descriptive features in the spectra would help to improve discrimination accuracy. For comparison, four different inputs of AE-extracted features, raw NIR spectra, principal component (PC) scores, and features extracted using locally linear embedding were employed for sample discrimination using support vector machine. The use of AE-extracted feature improved the accuracy in the discrimination of samples in all 8 products. The improvement was more substantial when the sample spectral features were indistinct. It demonstrates that AE is expandable for vibrational spectroscopic discriminant analysis of other samples with complex composition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2020.127332DOI Listing

Publication Analysis

Top Keywords

autoencoder feature
8
feature extraction
8
extraction tool
8
tool near-infrared
8
spectroscopic discriminant
8
discriminant analysis
8
sample spectral
8
spectral features
8
discrimination
5
features
5

Similar Publications

Although the Transformer architecture has established itself as the industry standard for jobs involving natural language processing, it still has few uses in computer vision. In vision, attention is used in conjunction with convolutional networks or to replace individual convolutional network elements while preserving the overall network design. Differences between the two domains, such as significant variations in the scale of visual things and the higher granularity of pixels in images compared to words in the text, make it difficult to transfer Transformer from language to vision.

View Article and Find Full Text PDF

Intelligent Intrusion Detection System Against Various Attacks Based on a Hybrid Deep Learning Algorithm.

Sensors (Basel)

January 2025

Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia.

The Internet of Things (IoT) has emerged as a crucial element in everyday life. The IoT environment is currently facing significant security concerns due to the numerous problems related to its architecture and supporting technology. In order to guarantee the complete security of the IoT, it is important to deal with these challenges.

View Article and Find Full Text PDF

Objective: This study explores a semi-supervised learning (SSL), pseudo-labeled strategy using diverse datasets such as head and neck cancer (HNCa) to enhance lung cancer (LCa) survival outcome predictions, analyzing handcrafted and deep radiomic features (HRF/DRF) from PET/CT scans with hybrid machine learning systems (HMLSs).

Methods: We collected 199 LCa patients with both PET and CT images, obtained from TCIA and our local database, alongside 408 HNCa PET/CT images from TCIA. We extracted 215 HRFs and 1024 DRFs by PySERA and a 3D autoencoder, respectively, within the ViSERA 1.

View Article and Find Full Text PDF

Purpose: The integration of artificial intelligence (AI), particularly deep learning (DL), with optical coherence tomography (OCT) offers significant opportunities in the diagnosis and management of glaucoma. This article explores the application of various DL models in enhancing OCT capabilities and addresses the challenges associated with their clinical implementation.

Methods: A review of articles utilizing DL models was conducted, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), generative adversarial networks (GANs), autoencoders, and large language models (LLMs).

View Article and Find Full Text PDF

The Neural Frontier of Future Medical Imaging: A Review of Deep Learning for Brain Tumor Detection.

J Imaging

December 2024

Laboratory of Automation and Manufacturing Engineering, Department of Industrial Engineering, Batna 2 University, Batna 05000, Algeria.

Brain tumor detection is crucial in medical research due to high mortality rates and treatment challenges. Early and accurate diagnosis is vital for improving patient outcomes, however, traditional methods, such as manual Magnetic Resonance Imaging (MRI) analysis, are often time-consuming and error-prone. The rise of deep learning has led to advanced models for automated brain tumor feature extraction, segmentation, and classification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!