Development of ease-fabricated and effectively self-disinfecting textile materials for antimicrobial and infection prevention has been urgently desired by both consumers and industry. However, some nonresponsive antibacterial agents finished fabrics may be harmful to human. To address this issue, we developed a facile finishing method to endow woven cotton fabrics (WCF) with light-driven antibacterial property. Here in, porphyrinic metal-organic frameworks (PCN-224) were in situ synthesized on WCF (termed PCN-224/WCF) and PCN-224/WCF was proven to be used for antibacterial photodynamic inactivation (aPDI). aPDI studies indicated no difference in bacterial inactivation, the inactivation was 99.9999% of Gram-negative Escherichia coli 8099 and Pseudomonas aeruginosa CMCC (B) 10104 as well as Gram-positive Staphylococcus aureus ATCC-6538 and Bacillus subtilis CMCC (B) 63501 under visible light illumination (500 W, 15 cm vertical distance, λ ≥ 420 nm, 45 min). Cytotoxicity tests revealed PCN-224/WCF had low biological toxicity and good biocompatibility. Mechanism study revealed that singlet oxygen (O) was produced by PCN-224/WCF and caused severe damage to bacteria which was observed from the SEM images. This study provided a facile guideline to functionalize cotton fabrics with responsive bactericidal property which showed great potential for new generation of textiles with practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2020.06.038 | DOI Listing |
Sci Rep
January 2025
Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo, 11795, Egypt.
Industrialization of military textiles faces many challenges and some requirements such as durability, protection and suitability for hostile environment must be provided. Herein, fluorescent protective cotton with ultraviolet radiation (UVR)-protection and antimicrobial property was currently prepared via the immobilization of lanthanide-metal organic framework (Ln-MOF). Cotton fabrics were primarily activated via cationization process with 3-Chloro-2-hydroxypropyltrimethyl ammonium chloride to obtain the cationized cotton (Q-cotton).
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States.
Consumer products are a major source of chemicals that may pose a health risk. It is important to understand what chemicals are in these products to evaluate risk and assess new products for uncommon ingredients. Suspect screening analysis (SSA) using two-dimensional gas chromatography-high-resolution-time-of-flight/mass spectrometry (GCxGC-HR-TOF/MS) was applied to 92 consumer products from 5 categories.
View Article and Find Full Text PDFMolecules
December 2024
College of Mechatronic Engineering, Changwon National University, Changwon 51140, Gyeongsangnam-do, Republic of Korea.
Fire hazards are an increasing concern in several high-tech industries of public importance, particularly where textile fabrics are used in abundance. In this study, a novel layer by layer deposition method was utilized to develop a fire-retardant coating on cotton fabric. The method involves a hybrid cationic solution consisting of chitosan and branched polyethyleneimine, while bentonite clay was used as the anionic species.
View Article and Find Full Text PDFSmall
January 2025
School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China.
1D moisture-enabled electric generators (MEGs) hold great promise for powering electronic textiles, but their current limitations in power output and operational duration restrict their application in wearable technology. This study introduces a high-performance yarn-based moisture-enabled electric generator (YMEG), which comprises a carbon-fiber core, a cotton yarn active layer with a radial gradient of poly(4-styrensulfonic acid) and poly(vinyl alcohol) (PSSA/PVA), and an aluminum wire as the outer electrode. The unique design maintains a persistent moisture gradient between the interior and exterior electrodes, enhancing performance through the continuous proton diffusion from PSSA and Al⁺ ions from the aluminum wire.
View Article and Find Full Text PDFSci Rep
January 2025
Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt.
The cotton leafworm, Spodoptra littoralis, causes great damage to cotton crops. A new, safer method than insecticide is necessary for its control. Selenium nanoparticles (SeNPs) are metalloid nanomaterial, with extensive biological activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!