Effects of molecular interactions at various polymer brush surfaces on fibronectin adsorption induced cell adhesion.

Colloids Surf B Biointerfaces

Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

Published: October 2020

The effects of protein adsorption on the polymer brush surfaces with well-defined chemical structures and physical properties were examined with respect to initial protein adsorption, structural changes to the adsorbed proteins, and subsequent cell adhesion. Four polymer brush surfaces with different hydrophilicities and charge states were prepared. The molecular interaction forces during adsorption-desorption processes of protein on the polymer brush surfaces depending on the chemical structure of the polymer were determined. Crucially, these molecular interactions affected the adsorption behavior and structural changes of fibronectin (FN), a cell-adhesive protein, used in this study. Adsorption of FN onto the zwitterionic polymer and anionic polymer surfaces was difficult, however significant protein adsorption to the hydrophobic and cationic surfaces was observed. Further, the structural changes to the adhered FN on these surfaces were significant. Subsequent cell adhesion experiments revealed that the adhered cell density was correlated with the amount of adsorbed FN and the degree of FN structural change. In addition, the cationic surface inhibited cell proliferation behavior. These results indicate that cellular responses can be indirectly regulated by controlling the molecular interactions which induced the structural change of adsorbed proteins via the material surface properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2020.111205DOI Listing

Publication Analysis

Top Keywords

polymer brush
16
brush surfaces
16
molecular interactions
12
cell adhesion
12
protein adsorption
12
structural changes
12
adsorbed proteins
8
subsequent cell
8
structural change
8
polymer
7

Similar Publications

Polymer-brush-grafted nanoparticles (PGNPs) that can be covalently crosslinked post-processing enable the fabrication of mechanically robust and chemically stable polymer nanocomposites with high inorganic filler content. Modifying PGNP brushes to append UV-activated crosslinkers along the polymer chains would permit a modular crosslinking strategy applicable to a diverse range of nanocomposite compositions. Further, light-activated crosslinking reactions enable spatial control of crosslink density to program intentionally inhomogeneous mechanical responses.

View Article and Find Full Text PDF

Dynamic Brush Surface Inducing Mobile Crystallization for Sustainable Spray Cooling Using Saline.

Nano Lett

January 2025

School of Nanoscience and Materials Engineering, Henan University, Zhengzhou, Henan 450046, China.

Spray cooling, which dissipates heat through droplet evaporation, is an efficient cooling method. Using seawater instead of freshwater in spraying is appealing given the intensifying global water crisis. However, seawater-based cooling suffers from salt accumulation on hot surfaces.

View Article and Find Full Text PDF

Design of an efficient magnetic brush solid acid and its catalytic use in organic reactions.

Sci Rep

January 2025

Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Birkat Al Mauz, Nizwa, Sultanate of Oman.

In this research, with the Green Chemistry approach, to load more sulfonic acid active sites on catalyst surfaces, a nanocomposite material based on core-shell magnetite coated with vinyl silane and a sulfonated polymeric brush-like structure is designed and synthesized as a new class of efficient solid acid catalysts, referred to as FeO@VS-APS brush solid acid. The synthesized catalyst was comprehensively characterized by a range of instrumental techniques, including XRD, SEM, TEM, FT-IR, EDX, TGA, and VSM. The activity of the catalyst was evaluated in Biginelli, Strecker, and esterification reactions.

View Article and Find Full Text PDF

The emergence of toothpastes containing different abrasive and whitening substances has been a constant concern among dental professionals. The aim of the present study was to perform an in vitro assessment of the surface topography of nanoparticle composite resins subjected to simulated brushing with dentifrices. Test samples were prepared with Filtek Universal (3M ESPE), Filtek Bulkfill (3M ESPE) and Z350 (3M ESPE), with 24 samples per resin.

View Article and Find Full Text PDF

Architecturally hindered crystallization of bottlebrush graft copolymers offers a reaction- and solvent-free pathway for creating injectable elastomers with tissue-mimetic softness. Currently, injectable materials involve solvents and chemical reactions, leading to uncontrolled swelling, leaching of unreacted moieties, and side reactions with tissue. To address this issue, bottlebrush copolymers with a poly(ethylene glycol) (PEG) amorphous block and crystallizable poly(lactic acid) (PLA) grafted chains (A--B) were synthesized, with grafted chains of controlled length arranged along the backbone at controlled spacing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!