Background: The efficacy and environmental sustainability of pesticide application largely depend on maximizing target coverage, while minimizing off-target losses. Recently, laboratory-based measurements were used to develop new cannon-type spout to increase the droplet size spectra produced by a pneumatic vineyard sprayer. The study described below evaluated the effectiveness of the new device to reduce off-target losses (both in-field and off-field ground losses), and to distribute an adequate canopy spray. Field trials were conducted to measure canopy spray deposition, canopy coverage, and off-target losses from a multiple-row pneumatic sprayer equipped with newly-designed spout under three different positional configurations. The configurations were defined by the variation of liquid release positions from the inner to the outer part of the cannon-type spout: conventional, alternative, and extreme. Each configuration was tested in a vineyard by applying a solution of water and yellow-dye tracer.

Results: It was confirmed that the increased droplet size corresponding to the alternative and extreme liquid release positions has no effect on total canopy deposition or coverage. The alternative and extreme configurations produced reduced off-field losses, up to 75% and 83%, respectively, by increasing the droplet size spectra. These reduced off-field losses imply increased in-field losses of 13% and 16%, respectively.

Conclusions: The newly-designed pneumatic spout offers the first effective option for environmentally-friendly pneumatic spray pesticide application with the guarantee of canopy spray deposition and coverage levels similar to those obtained with conventional pneumatic application. © 2020 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.5975DOI Listing

Publication Analysis

Top Keywords

off-target losses
16
droplet size
12
canopy spray
12
alternative extreme
12
newly-designed pneumatic
8
pneumatic spout
8
losses
8
pesticide application
8
cannon-type spout
8
size spectra
8

Similar Publications

The massive increase in the amount of plastid genome data have allowed researchers to address a variety of evolutionary questions within a wide range of plant groups. While plastome structure is generally conserved, some angiosperm lineages exhibit structural changes. Such is the case of the megadiverse order Asterales, where rearrangements in plastome structure have been documented.

View Article and Find Full Text PDF

Background: Plant fungal diseases present a major challenge to global agricultural production. Despite extensive efforts to develop fungicides, particularly succinate dehydrogenase inhibitors (SDHIs), their effectiveness is often limited by poor retention of fungicide droplets on hydrophobic leaves. The off-target losses and unintended release cause fungal resistance and severe environmental pollution.

View Article and Find Full Text PDF

CRISPR/Cas9-mediated disruption of orf76 as an antiviral therapy against BmNPV in the transgenic silkworm.

Int J Biol Macromol

October 2024

State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China. Electronic address:

Viral diseases pose a significant threat to livestock husbandry and plant cultivation. CRISPR/Cas9-mediated targeted editing of viral genes offers a promising approach to antiviral therapy. The silkworm, Bombyx mori, is an economically important insect susceptible to infection by B.

View Article and Find Full Text PDF

The study demonstrates the successful management of Meloidogyne incognita in eggplant using Mi-flp14 RNA interference, showing reduced nematode penetration and reproduction without off-target effects across multiple generations. Root-knot nematode, Meloidogyne incognita, causes huge yield losses worldwide. Neuromotor function in M.

View Article and Find Full Text PDF

The intuitive manipulation of specific amino acids to alter the activity or specificity of CRISPR-Cas9 has been a topic of great interest. As a large multi-domain RNA-guided endonuclease, the intricate molecular crosstalk within the Cas9 protein hinges on its conformational dynamics, but a comprehensive understanding of the extent and timescale of the motions that drive its allosteric function and association with nucleic acids remains elusive. Here, we investigated the structure and multi-timescale molecular motions of the recognition (Rec) lobe of GeoCas9, a thermophilic Cas9 from Geobacillus stearothermophilus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!