We investigated changes of slow-wave activity and sleep slow oscillations in the night following procedural learning boosted by reinforcement learning, and how these changes correlate with behavioural output. In the Task session, participants had to reach a visual target adapting cursor's movements to compensate an angular deviation introduced experimentally, while in the Control session no deviation was applied. The task was repeated at 13:00 hours, 17:00 hours and 23:00 hours before sleep, and at 08:00 hours after sleep. The deviation angle was set at 15° (13:00 hours and 17:00 hours) and increased to 45° (reinforcement) at 23:00 hours and 08:00 hours. Both for Task and Control nights, high-density electroencephalogram sleep recordings were carried out (23:30-19:30 hours). The Task night as compared with the Control night showed increases of: (a) slow-wave activity (absolute power) over the whole scalp; (b) slow-wave activity (relative power) in left centro-parietal areas; (c) sleep slow oscillations rate in sensorimotor and premotor areas; (d) amplitude of pre-down and up states in premotor regions, left sensorimotor and right parietal regions; (e) sigma crowning the up state in right parietal regions. After Task night, we found an improvement of task performance showing correlations with sleep slow oscillations rate in right premotor, sensorimotor and parietal regions. These findings suggest a key role of sleep slow oscillations in procedural memories consolidation. The diverse components of sleep slow oscillations selectively reflect the network activations related to the reinforced learning of a procedural visuomotor task. Indeed, areas specifically involved in the task stand out as those with a significant association between sleep slow oscillations rate and overnight improvement in task performance.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jsr.13117DOI Listing

Publication Analysis

Top Keywords

sleep slow
28
slow oscillations
28
slow-wave activity
12
oscillations rate
12
parietal regions
12
sleep
11
task
9
procedural learning
8
1300 hours 1700 hours
8
task night
8

Similar Publications

This study involved 72 volunteers divided into two groups according to the apnea-hypopnea index (AHI): AHI>15 episodes per hour (ep/h) (main group, n=39, including 28 men, median AHI 44.15, median age 47), 0≤AHI≤15ep/h (control group, n=33, including 12 men, median AHI 2, median age 28). Each participant underwent polysomnography with a recording of 19 EEG channels.

View Article and Find Full Text PDF

Microglia mediate the increase in slow-wave sleep associated with high ambient temperature.

J Physiol Sci

January 2025

Graduate School of Science, Nagoya University, 464-8602, Nagoya, Japan; Graduate School of Medicine, Hokkaido University, 060-8638, Sapporo, Japan. Electronic address:

An increase in ambient temperature leads to an increase in sleep. However, the mechanisms behind this phenomenon remain unknown. This study aimed to investigate the role of microglia in the increase of sleep caused by high ambient temperature.

View Article and Find Full Text PDF

Objectives: This study seeks to delineate the sleep architecture characteristics in older adults with short-term insomnia and mild cognitive impairment (MCI) and to explore their association with cognitive performance.

Methods: Ninety elderly individuals with short-term insomnia were enrolled and stratified into two cohorts based on their Montreal Cognitive Assessment (MoCA) scores: the Short-Term Insomnia Group (STID) comprising 35 participants and the Short-Term Insomnia with Cognitive Impairment Group (STID-MCI) with 55 participants. Demographic data, Pittsburgh Sleep Quality Index (PSQI), MoCA, Hamilton Depression Rating Scale (HAMD-17), Hamilton Anxiety Rating Scale (HAMA), and polysomnography (PSG) parameters were compared between groups.

View Article and Find Full Text PDF

Introduction: Improving sleep in murine Alzheimer's disease (AD) is associated with reduced brain amyloidosis. However, the window of opportunity for successful sleep-targeted interventions, regarding the reduction in pathological hallmarks and related cognitive performance, remains poorly characterized.

Methods: Here, we enhanced slow-wave activity (SWA) during sleep via sodium oxybate (SO) oral administration for 2 weeks at early (6 months old) or moderately late (11 months old) disease stages in Tg2576 mice and evaluated resulting neuropathology and behavioral performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!