Hybrid quantum systems are essential for the realization of distributed quantum networks. In particular, piezo-mechanics operating at typical superconducting qubit frequencies features low thermal excitations, and offers an appealing platform to bridge superconducting quantum processors and optical telecommunication channels. However, integrating superconducting and optomechanical elements at cryogenic temperatures with sufficiently strong interactions remains a tremendous challenge. Here, we report an integrated superconducting cavity piezo-optomechanical platform where 10 GHz phonons are resonantly coupled with photons in a superconducting cavity and a nanophotonic cavity at the same time. Taking advantage of the large piezo-mechanical cooperativity (C ~7) and the enhanced optomechanical coupling boosted by a pulsed optical pump, we demonstrate coherent interactions at cryogenic temperatures via the observation of efficient microwave-optical photon conversion. This hybrid interface makes a substantial step towards quantum communication at large scale, as well as novel explorations in microwave-optical photon entanglement and quantum sensing mediated by gigahertz phonons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7320138 | PMC |
http://dx.doi.org/10.1038/s41467-020-17053-3 | DOI Listing |
Molecules
January 2025
School of Metallurgical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
The dissolution mechanism of YbOF in a fluoride-containing (LiF-CaF) molten salt is the basis for analyzing the structure of the resulting medium and optimizing the electrolytic preparation of rare-earth Yb alloys. In this study, isothermal saturation was used to analyze solubility changes of YbOF in the (LiF-CaF). system.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China.
In inertial confinement fusion experiments, hot spot mix caused by hydrodynamic instabilities is a critical performance limitation. Currently, multi-channel Ross filter pair imaging is used to quantitatively diagnose the mix mass of cryogenic hot spots driven by 100 kJ energy, but this method brings significant uncertainty. To measure the level of mix more accurately, we have developed a two-temperature model to modify the fitted bremsstrahlung spectra based on the characteristics of cryogenic implosion hot spots.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
Attaining sub-Kelvin temperatures remains technologically challenging and often relies on the scarce resource He, unless employing adiabatic demagnetization refrigeration. Herein, the active coolant typically consists of weakly coupled paramagnetic ions, whose magnetic interaction strengths are comparable in energy to the relevant temperature regime of cooling. Such interactions depend strongly on inter-ion distances, fundamentally hindering the realization of dense coolants for sub-Kelvin refrigeration.
View Article and Find Full Text PDFChem Asian J
January 2025
Universite de Rennes 1, Sciences Chimiques de Rennes - UMR 6226, Avenue du General Leclerc, Campus de Beaulieu, 35042, Rennes, FRANCE.
A novel coordination motif comprising [4]helicene fused with pyrazino-phenanthroline (H4PP) has been synthesized and reacted with ReCl(CO)5 to yield its rhenium(I) complex (Re-H4PP). Absorption and emission spectroscopic analysis conducted in dichloromethane and 2-methyltetrahydrofuran reveals that combining pyrazino-phenanthroline with helicene visibly affects the photophysical attributes of both the resulting ligand and its Re(I) complex as compared to their non-helicene analogues, and even more importantly leads to relatively high photoluminescence quantum yield values, especially in the case of H4PP (29%). Chiroptical studies through electronic circular dichroism and circularly polarized luminescence performed on enantiomerically enriched samples of Re-H4PP show the chiral nature of low-energy excited states affording notable glum values that amplify at cryogenic temperatures.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
OzGrav-ANU, ARC Centre for Gravitational Astrophysics, College of Science, The Australian National University, Canberra ACT2601, Australia.
We present the design and commissioning of a cryogenic low-vibration test facility that measures displacement noise from a gram-scale silicon cantilever at the level of 10-16m/Hz at 1 kHz. This sensitivity is necessary for future tests of thermal noise models on cross sections of silicon suspension samples proposed for future gravitational-wave detectors. A volume of ∼36 l is enclosed by radiation shields cooling an optical test cavity that is suspended from a multi-stage pendulum chain providing isolation from acoustic and environmental noise.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!