Identifying microbial indicators of damp and moldy buildings remains a challenge at the intersection of microbiology, building science, and public health. Sixty homes in New York City were assessed for moisture-related damage, and three types of dust samples were collected for microbiological analysis. We applied four approaches for detecting fungal signatures of moisture damage in these buildings. Two novel targeted approaches selected specific taxa, identified by hypotheses, from the broad mycobiome as detected with amplicon sequencing. We investigated whether (i) hydrophilic fungi (i.e., requiring high moisture) or (ii) fungi previously reported as indicating damp homes would be more abundant in water-damaged rooms/homes than in nondamaged rooms/homes. Two untargeted approaches compared water-damaged to non-water-damaged homes for (i) differences between indoor and outdoor fungal populations or (ii) differences in the presence or relative abundance of particular fungal taxa. Strong relationships with damage indicators were found for some targeted fungal groups in some sampling types, although not always in the hypothesized direction. For example, for vacuum samples, hydrophilic fungi had significantly higher relative abundance in water-damaged homes, but mesophilic fungi, unexpectedly, had significantly lower relative abundance in homes with visible mold. Untargeted approaches identified no microbial community metrics correlated with water damage variables but did identify specific taxa with at least weak positive links to water-damaged homes. These results, although showing a complex relationship between moisture damage and microbial communities, suggest that targeting particular fungi offers a potential route toward identifying a fungal signature of moisture damage in buildings. Living or working in damp or moldy buildings increases the risk of many adverse health effects, including asthma and other respiratory diseases. To date, however, the particular environmental exposure(s) from water-damaged buildings that causes the health effects have not been identified. Likewise, a consistent quantitative measurement that would indicate whether a building is water damaged or poses a health risk to occupants has not been found. In this work, we tried to develop analytical tools that would find a microbial signal of moisture damage amid the noisy background of microorganisms in buildings. The most successful approach taken here focused on particular groups of fungi-those considered likely to grow in damp indoor environments-and their associations with observed moisture damage. With further replication and refinement, this hypothesis-based strategy may be effective in finding still-elusive relationships between building damage and microbiomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7440782PMC
http://dx.doi.org/10.1128/AEM.01047-20DOI Listing

Publication Analysis

Top Keywords

moisture damage
24
damage buildings
12
untargeted approaches
12
relative abundance
12
damage
10
fungal signature
8
signature moisture
8
damp moldy
8
moldy buildings
8
specific taxa
8

Similar Publications

Glassphalt suffers from performance defects, especially against moisture damage and fatigue cracking. In this research, the performance of glassphalt modified with CF has been evaluated against moisture damage, fatigue cracking and rutting. Based on this, Modified Lottman, Wilhelmy Plate (WP), Indirect Tensile Stiffness Modulus (ITSM), Indirect Tensile Fatigue (ITF), and Repeated Load Axial (RLA) tests have been performed on glassphalt modified with CF.

View Article and Find Full Text PDF

This study evaluated the effects of malic acid vacuum microwave preconditioning (MVMP) on lotus root (LR) by examining its moisture content, dielectric properties, microstructure, and starch characteristics, including modifications in starch structure and composition. Dielectric properties and LF-NMR indicated that the dielectric constant (ε') was closely associated to moisture content and state, while changes in water migration depended on microwave power and the dielectric loss factor (ε″). Increased microwave power and malic acid concentration resulted in microstructural damage (indentation and breakage of starch granules) and starch hydrolysis into smaller particles.

View Article and Find Full Text PDF

Soil moisture drought and diverse impacts on vegetation across the Tibetan Plateau in recent three decades.

Sci Total Environ

January 2025

Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China. Electronic address:

Climate warming is presumed to cause drought on the Tibetan Plateau (TP), posing severe threats to local vegetation and ecosystems. Currently, soil moisture (SM) drought and its effects on vegetation growth have been rarely reported, due to lacking observations and data uncertainties. Here we used ERA5-Land, ESA CCI, and GLDAS Noah SM to investigate the spatiotemporal patterns of summertime (May-September) SM drought and its impacts on vegetation over 1995-2018.

View Article and Find Full Text PDF

Background: Effective hemorrhage protocols prioritize immediate hemostatic resuscitation to manage hemorrhagic shock. Prehospital resuscitation using blood products, such as whole blood or alternatively dried plasma in its absence, has the potential to improve outcomes in hemorrhagic shock patients. However, integrating blood products into prehospital care poses substantial logistical challenges due to issues with storage, transport, and administration in field environments.

View Article and Find Full Text PDF

Moisture-responsive ultralow-hysteresis polymer ionogels for adhesion-switchable strain sensing.

Mater Horiz

January 2025

State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.

Adhesion-switchable ultralow-hysteresis polymer ionogels are highly demanded in soft electronics to avoid debonding damage and signal distortion, yet the design and fabrication of such ionogels are challenging. Herein, we propose a novel method to design switchable adhesive ionogels by using binary ionic solvents with two opposite-affinity ionic components. The obtained ionogels exhibit moisture-induced phase separation, facilitating switchable adhesion with a high detaching efficiency (>99%).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!