Background: Transcatheter mitral valve repair (TMVR) utilization has increased significantly in the United States over the last years. Yet, a risk-prediction tool for adverse events has not been developed. We aimed to generate a machine-learning-based algorithm to predict in-hospital mortality after TMVR.
Methods: Patients who underwent TMVR from 2012 through 2015 were identified using the National Inpatient Sample database. The study population was randomly divided into a training set (n = 636) and a testing set (n = 213). Prediction models for in-hospital mortality were obtained using five supervised machine-learning classifiers.
Results: A total of 849 TMVRs were analyzed in our study. The overall in-hospital mortality was 3.1%. A naïve Bayes (NB) model had the best discrimination for fifteen variables, with an area under the receiver-operating curve (AUC) of 0.83 (95% CI, 0.80-0.87), compared to 0.77 for logistic regression (95% CI, 0.58-0.95), 0.73 for an artificial neural network (95% CI, 0.55-0.91), and 0.67 for both a random forest and a support-vector machine (95% CI, 0.47-0.87). History of coronary artery disease, of chronic kidney disease, and smoking were the three most significant predictors of in-hospital mortality.
Conclusions: We developed a robust machine-learning-derived model to predict in-hospital mortality in patients undergoing TMVR. This model is promising for decision-making and deserves further clinical validation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7736498 | PMC |
http://dx.doi.org/10.1016/j.carrev.2020.06.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!