To explore different posttreatment changes between multimode tumor ablation therapy (MTAT) and radiofrequency ablation (RFA) using intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) and diffusion kurtosis imaging (DKI) in patients with hepatic malignancies.Eighty - seven patients with one hundred and twenty eight hepatic lesions receiving MTAT or RFA underwent IVIM-DWI and DKI before and after treatment. The mean value of apparent diffusion coefficient (ADC), IVIM-DWI parameters, including true diffusion coefficient (D), pseudo-diffusion coefficient (DP), perfusion fraction (f), and DKI parameters including diffusion coefficient (DK), apparent diffusional kurtosis (K) were retrospectively compared prior to and following treatment as well as between treatment groups. The degree of parameters change after ablation was compared between 2 treatment modalities.The mean value of ADC, D, and DK increased while f, and K decreased significantly in MTAT group. In RFA group, just ADC and K showed significantly change following treatment. The ADC and D value were higher in MTAT group than in RFA group 1 month after treatment. While f was lower in MTAT group after treatment compared with RFA group. The ADC, D and DK increased (21.89 ± 24.95% versus 8.76 ± 19.72%, P = .04 for ADC, 33.78 ± 54.01% versus 7.91 ± 25.16%, P = .03 for D, 25.91 ± 36.28% versus 1.75 ± 46.42%, P = .01 for DK) while f declined (-32.62 ± 41.48% versus 6.51 ± 44.16%, P < .001) more in MTAT group.The MTAT induced different posttreatment changes on water molecule diffusion and microvasculature related functional MR parameters compared to RFA in patients with liver tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329015PMC
http://dx.doi.org/10.1097/MD.0000000000020795DOI Listing

Publication Analysis

Top Keywords

diffusion coefficient
12
mtat group
12
rfa group
12
multimode tumor
8
tumor ablation
8
ablation therapy
8
parameters change
8
radiofrequency ablation
8
parameters including
8
adc increased
8

Similar Publications

Background: The wide variability in thresholds on computed tomography (CT) perfusion parametric maps has led to controversy in the stroke imaging community about the most accurate measurement of core infarction.

Purpose: To investigate the feasibility of using U-Net to perform infarct core segmentation in CT perfusion imaging.

Material And Methods: CT perfusion parametric maps were the input of U-Net, while the ground truth segmentation was determined based on diffusion-weighted imaging (DWI).

View Article and Find Full Text PDF

Significance: In the last years, time-resolved near-infrared spectroscopy (TD-NIRS) has gained increasing interest as a tool for studying tissue spectroscopy with commercial devices. Although it provides much more information than its continuous wave counterpart, accurate models interpreting the measured raw data in real time are still lacking.

Aim: We introduce an analytical model that can be integrated and used in TD-NIRS data processing software and toolkits in real time.

View Article and Find Full Text PDF

The current piston material, Al-12Si, lacks sufficient passivation in the acidic lubrication system of biodiesel engines, making it prone to corrosion in the presence of Cl. Fe amorphous particles exhibit good compatibility with Al-12Si, possessing strong corrosion resistance, excellent passivation ability, and good high-temperature stability. They are a potential reinforcement for enhancing the Al-12Si piston material.

View Article and Find Full Text PDF

Schizophyllan (SPG) is a semi-flexible, triple-helical polysaccharide with attractive properties as an efficient viscosifying compound and biological response modifier. We report microrheological characterization of schizophyllan as dispersed in solution and the changes associated when crosslinked with chitosan over an extended frequency range using diffusing wave spectroscopy (DWS). A SPG with high molecular weight (M = 1.

View Article and Find Full Text PDF

Objective: We aim to determine the maximum safe spatial-peak pulse-average intensity (I) of low-intensity focused ultrasound stimulation (LIFUS) in stroke patients and explore its effect on motor learning and corticospinal excitability.

Methods: We adopted the classic 3+3 design to escalate I (estimated in-vivo transcranial value) from 0, 1, 2, 4, 6, to 8 W/cm. Stopping rules were pre-defined: 2-degree scalp burn, clinical seizure, new lesion on diffusion-weighted imaging or major reduction in apparent diffusion coefficient, and participant discontinuation due to any reason.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!