Dicentric analysis and the ring PCC assay as established biodosimetry methods both have limitations in the estimation of absorbed doses in suspected overexposure cases between 5 and 10 Gy. The proposed method based on calyculin A-induced PCC overcomes these limitations by scoring excess objects as the endpoint. This new scoring method can potentially serve as a faster and up-scalable approach that complements the existing methods with higher accuracy at different dose ranges. It can also potentially be performed by less skilled workers when no automated system is available in mass casualty emergency cases to assist with the triage of patients. Additionally, it offers the possibility to further reduce the sample size and PCC induction time. In this pilot study, a calibration curve for excess objects was constructed using the new scoring method for the first time and a blind validation test composed of three unknown doses was carried out. Almost all the dose estimates were within the 95% confidence limits of the actual test doses by scoring only 50-100 PCC spreads. This method was found to be more accurate than ring PCC for doses below 10 Gy.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6498/aba085DOI Listing

Publication Analysis

Top Keywords

excess objects
12
method based
8
based calyculin
8
calyculin a-induced
8
scoring excess
8
ring pcc
8
scoring method
8
pcc
6
method
5
scoring
5

Similar Publications

Detecting bolt defects on transmission lines is crucial for ensuring the safe operation of the electrical power system. However, existing methods for detecting bolt defects on transmission lines require higher detection accuracy and smaller model sizes. To address these challenges, this paper proposes a real-time bolt defect detection model based on YOLOv7, named YOLOv7-CWFD.

View Article and Find Full Text PDF

Background: There is a shortage of equine veterinarians. Understanding what factors are associated with job satisfaction in equine veterinarians can inform interventions to increase retention in equine medicine.

Objective: To explore the prominent factors causing work dissatisfaction and burnout in equine veterinarians.

View Article and Find Full Text PDF

Reducing damage and missed harvest rates is essential for improving efficiency in unmanned cabbage harvesting. Accurate real-time segmentation of cabbage heads can significantly alleviate these issues and enhance overall harvesting performance. However, the complexity of the growing environment and the morphological variability of field-grown cabbage present major challenges to achieving precise segmentation.

View Article and Find Full Text PDF

Building of CuO@Cu-TA@DSF/DHA Nanoparticle Targets MAPK Pathway to Achieve Synergetic Chemotherapy and Chemodynamic for Pancreatic Cancer Cells.

Pharmaceutics

December 2024

Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China.

With the increase of reactive oxygen species (ROS) production, cancer cells can avoid cell death and damage by up-regulating antioxidant programs. Therefore, it will be more effective to induce cell death by using targeted strategies to further improve ROS levels and drugs that inhibit antioxidant programs. Considering that dihydroartemisinin (DHA) can cause oxidative damage to protein, DNA, or lipids by producing excessive ROS, while, disulfiram (DSF) can inhibit glutathione (GSH) levels and achieve the therapeutic effect by inhibiting antioxidant system and amplifying oxidative stress, they were co-loaded onto the copper peroxide nanoparticles (CuO) coated with copper tannic acid (Cu-TA), to build a drug delivery system of CuO@Cu-TA@DSF/DHA nanoparticles (CCTDD NPs).

View Article and Find Full Text PDF

Measuring Attractive Interaction between a Self-Electrophoretic Micromotor and a Wall.

Phys Rev Lett

December 2024

School of Physics and Astronomy, Institute of Natural Sciences and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China.

Chemically driven micromotors exhibit a pronounced affinity for nearby surfaces, yet the quantification of this motor-wall interaction strength remains unexplored in experiments. Here, we apply an external force to a self-electrophoretic micromotor which slides along a wall and measures the force necessary to disengage the motor from the wall. Our experiments unveil that the required disengaging force increases with the strength of chemical driving, often surpassing both the motor's effective gravity and its propulsive thrust.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!