A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Temperature prediction of ultrasonic vibration-assisted milling. | LitMetric

Temperature prediction of ultrasonic vibration-assisted milling.

Ultrasonics

Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States. Electronic address:

Published: December 2020

Machining temperature is a key factor in ultrasonic vibration-assisted milling as it can significantly influence tool wear rate and residual thermal stresses. In current study, a physics-based analytical predictive model on machining temperature in ultrasonic vibration-assisted milling is proposed, without resorting to iterative numerical simulations. As the tool periodically loses contact with the workpiece under vibration, three types of tool-workpiece separation criteria are first examined based on the tool trajectory under ultrasonic vibration. Type I criterion examines whether the relative velocity between tool and workpiece in cutting direction is opposite to the tool rotation direction. Type II criterion examines whether the instantaneous vibration displacement in radial direction is larger than instantaneous uncut chip thickness. Type III criterion examines whether there is overlap between current and previous tool paths due to vibration. If no contact, the instantaneous temperature rise is zero. Otherwise, the temperature rise is predicted under shearing heat source in shear zone and secondary rubbing heat source along machined surface. A mirror heat source method is applied to predict temperature rise, considering oblique band heat sources moving in a semi-infinite medium. The proposed predictive temperature model in ultrasonic vibration-assisted milling is validated through comparison to experimental measurements on Al 6063 alloy. The proposed predictive model is able to match the measured temperature with high accuracy of 1.85% average error and 5.22% largest error among all cases. Sensitivity analysis is also conducted to study the influences of cutting and vibration parameters on temperature. The proposed model is valuable in terms of providing an accurate and reliable reference for the prediction of temperature in ultrasonic vibration-assisted milling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2020.106212DOI Listing

Publication Analysis

Top Keywords

ultrasonic vibration-assisted
20
vibration-assisted milling
20
criterion examines
12
temperature rise
12
heat source
12
temperature
10
machining temperature
8
predictive model
8
temperature ultrasonic
8
type criterion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!