Taxonomically restricted genes (TRGs) are genes that are present only in one clade. Protein-coding TRGs may evolve de novo from previously noncoding sequences: functional ncRNA, introns, or alternative reading frames of older protein-coding genes, or intergenic sequences. A major challenge in studying de novo genes is the need to avoid both false-positives (nonfunctional open reading frames and/or functional genes that did not arise de novo) and false-negatives. Here, we search conservatively for high-confidence TRGs as the most promising candidates for experimental studies, ensuring functionality through conservation across at least two species, and ensuring de novo status through examination of homologous noncoding sequences. Our pipeline also avoids ascertainment biases associated with preconceptions of how de novo genes are born. We identify one TRG family that evolved de novo in the Drosophila melanogaster subgroup. This TRG family contains single-copy genes in Drosophila simulans and Drosophila sechellia. It originated in an intron of a well-established gene, sharing that intron with another well-established gene upstream. These TRGs contain an intron that predates their open reading frame. These genes have not been previously reported as de novo originated, and to our knowledge, they are the best Drosophila candidates identified so far for experimental studies aimed at elucidating the properties of de novo genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059200 | PMC |
http://dx.doi.org/10.1093/gbe/evaa127 | DOI Listing |
Int J Mol Sci
December 2024
Institute of Neurology, Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy.
Pathogenic variants are associated with neonatal epilepsies, ranging from self-limited neonatal epilepsy to -developmental and epileptic encephalopathy (DEE). In this study, next-generation sequencing was performed, applying a panel of 142 epilepsy genes on three unrelated individuals and affected family members, showing a wide variability in the epileptic spectrum. The genetic analysis revealed two likely pathogenic missense variants (c.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
is an important medicinal herb; but its long-term cultivation often leads to continuous cropping problems. The underlying cause can be attributed to the accumulation of and alterations in root exudates; which interact with soil-borne pathogens; particularly ; triggering disease outbreaks that severely affect its yield and quality. It is therefore crucial to elucidate the mechanisms by which root exudates induce CCS043 outbreaks.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Laboratory of Plant Chemical Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
Background: Mongolian grasslands, including the Gobi Desert, have been exposed to drought conditions with few rains. In such harsh environments, plants with highly resistant abilities against drought stress survive over long periods. We hypothesized that these plants could harbor novel and valuable genes for enhancing drought stress resistance.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, University Drive Lethbridge, Lethbridge, AB, Canada.
Prenatal maternal stress (PNMS) determines lifetime mental and physical health. Here, we show in rats that PNMS has consequences for placental function and fetal brain development across four generations (F0-F3). Using a systems biology approach, comprehensive DNA methylation (DNAm), miRNA, and mRNA profiling revealed a moderate impact of PNMS in the F1 generation, but drastic changes in F2 and F3 generations, suggesting compounding effects of PNMS with each successive generation.
View Article and Find Full Text PDFEBioMedicine
January 2025
University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Heart and Vascular Institute, UPMC, Pittsburgh, PA, USA.
Background: Preclinical data have shown that low levels of metabolites with anti-inflammatory properties may impact metabolic disease processes. However, the association between mid-life levels of such metabolites and long-term ASCVD risk is not known.
Methods: We characterised the plasma metabolomic profile (1228 metabolites) of 1852 participants (58.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!