A novel reactor was designed and implemented for water purification using deep ultraviolet light emitting diodes (LEDs). The focus was on minimizing the number of LEDs required for effective germicidal action. Simulation studies were carried out on the flow of water as well as the irradiance of UV. Variation was made in the beam divergence of the UV sources and reflectivity of optical coatings used for photon recycling. Based on optimized reactor designs, water purification was carried out both in the static and flow-through configuration. Water from various sources was spiked with a known bacterial strain, exposure studies were carried out and germicidal effect was determined. Our results indicate that under optimal design, a 3 mL volume of water shows a three order inactivation using a single UV-LED in a static reactor in 180 s. For a flow-through geometry, only three LEDs were used in the reactor implementation, and a multi-pass procedure was used to purify 150 mL of water from an Escherichia coli CFU count of 4.3 × 10/mL to 12/mL. While slow, this process requires less than 2 W, and can be powered from rechargeable sources. Faster processes can be implanted using multiple such reactor units in parallel, and can be optimized to the requirement and power levels.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wh.2020.008DOI Listing

Publication Analysis

Top Keywords

water purification
12
deep ultraviolet
8
ultraviolet light
8
light emitting
8
emitting diodes
8
studies carried
8
water
7
reactor
6
design implementation
4
implementation water
4

Similar Publications

In integrated crop-livestock systems, livestock graze on cover crops and deposit raw manure onto fields to improve soil health and fertility. However, enteric pathogens shed by grazing animals may be associated with foodborne pathogen contamination of produce influenced by fecal-soil microbial interactions. We analyzed 300 fecal samples (148 from sheep and 152 from goats) and 415 soil samples (272 from California and 143 from Minnesota) to investigate the effects of grazing and the presence of non-O157 Shiga toxin-producing Escherichia coli (STEC) or generic E.

View Article and Find Full Text PDF

Nanoconfinement at the interface of heterogeneous Fenton-like catalysts offers promising avenues for advancing oxidation processes in water purification. Herein, we introduce a template-free strategy for synthesizing nanoconfined catalysts from municipal sludge (S-NCCs), specifically engineered to optimize reactive oxygen species (ROS) generation and utilization for rapid pollutant degradation. Using selective hydrofluoric acid corrosion, we create an architecture that confines atomically dispersed Fe centers within a micro-mesoporous carbon matrix in situ.

View Article and Find Full Text PDF

Continuously flowing wastewater-treatment processes can be configured for biological and physical selection to form and retain large biological aggregates (LBAs), along with suspended biomass that contains ordinary biological flocs and biomass that has detached from the LBAs. Suspended biomass and LBAs have different solids residence times (SRTs) and mass-transport resistances. Here, mathematical sub-models that describe metabolic processes, a 1-D biofilm, and spherical carriers that can migrate throughout a wastewater-treatment process were combined to simulate a full-scale demonstration train having anaerobic, anoxic, and oxic zones, as well as side-stream enhanced biological phosphorus removal.

View Article and Find Full Text PDF

Rationale: Extraterrestrial amines and ammonia are critical ingredients for the formation of astrobiologically important compounds such as amino acids and nucleobases. However, conventional methods for analyzing the composition and isotopic ratios of volatile amines suffer from lengthy derivatization and purification procedures, high sample mass consumption, and chromatographic interferences from derivatization reagents and non-target compounds.

Methods: Here we demonstrate a highly efficient method to analyze the composition and compound specific isotopic ratios of C to C amines as well as ammonia based on solid phase micro-extraction (SPME) on-fiber derivatization.

View Article and Find Full Text PDF

Tea saponin has garnered tremendous interest for its potential use in surfactant and drug synthesis. This research was designed to develop a technique based on pH-responsive switchable deep eutectic solvents (SDESs) for extracting tea saponins from Camellia oleifera seed meal. SDES synthesized from hexanoic acid and triethanolamine (1:1 molar ratio) offered the optimum extractive performance and the optimal conditions were obtained through single-factor experiments: 30 wt% water content in SDES, solid-liquid ratio of 1:30 g/mL, 60°C extraction temperature, 30 min extraction time, and acid volume of 1500 µL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!