The health risks brought by particles cannot be present via a sole parameter. Instead, the particulate matter oxidative potential (PM OP), which expresses combined redox properties of particles, is used as an integrated metric to assess associated hazards and particle-induced health effects. OP definition provides the capacity of PM toward target oxidation. The latest technologies of a cellular OP measurement has been growing in relevant studies. In this review, OP measurement techniques are focused on discussing along with PM characterization because of many related studies via OP measurements investigating relationship with human health. Many OP measurement methods, such as dithiothreitol (DTT), ascorbic acid (AA), glutathione (GSH) assay and other a cellular assays, are used to study the association between PM toxicity and PM characterization that make different responses, including PM components, size and sources. Briefly, AA and DTT assays are sensitive to metals (such as copper, manganese and iron etc.) and organics (quinones, VOCs and PAH). Measured OP have significant association with certain PM-related end points, for example, lung cancer, COPD and asthma. Literature has found that exposure to measured OP has higher risk ratios than sole PM mass, which may be containing the PM health-relevant fraction. PM characterization effect on health via OP measurement display a promising method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/reveh-2020-0003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!