AI Article Synopsis

  • Continuous decomposition of chemical warfare agents (CWAs) is necessary for safety and elimination of stockpiles, with Zr-based metal-organic frameworks (Zr-MOFs) identified as effective catalysts but limited by their powder form.
  • Composite membrane catalysts (CMCs), combining Zr-MOF with nylon 6 nanofibers, enhance processability by allowing selective immobilization of the catalyst on porous supports.
  • CMCs demonstrated impressive durability and recycling capability, successfully decomposing a significant amount of a nerve agent simulant in a continuous flow system, marking a promising approach for real-world military applications.

Article Abstract

Continuous and safe decomposition of chemical warfare agents (CWAs) is a critical requirement to protect both soldiers and citizens and to eliminate the stockpiles after the cold war. The Zr-based metal-organic framework (Zr-MOF) has been known as the most effective catalyst for decomposing CWAs, especially the most fatal nerve agents, however, its low processability due to the powder form limits its expansion to actual military applications. To this end, the composite membrane catalysts (CMCs) comprising the Zr-MOF (UiO-66 catalyst) and nylon 6 nanofiber (porous supporter) are developed by the simple integration of electrospray and electrospinning, resulting in selective immobilization of UiO-66 on the surface of the nylon 6 nanofibers. These strategical benefits of CMCs gave super catalytic durability including recyclability over five times without decreasing the catalytic activity for the decomposition of methyl paraoxon (MPO), a simulant of the nerve agent, in the presence of -ethylmorpholine (-EM), which was not achieved in the original particulate UiO-66. Because of the excellent physical and chemical stabilities of CMCs, the CMC with 56 wt % of UiO-66 (CMC56) decomposed 198 g of MPO within an hour in the continuous flow system with a flow rate of 21.6 mL h. This study highlights the important strategies in designing the feasible membrane-type catalysts with superior catalytic activity and robust durability for decomposing CWAs in the continuous flow system.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c08276DOI Listing

Publication Analysis

Top Keywords

continuous flow
12
composite membrane
8
membrane catalysts
8
decomposition chemical
8
chemical warfare
8
decomposing cwas
8
catalytic activity
8
flow system
8
continuous
4
flow composite
4

Similar Publications

Continuous Characterization of Insoluble Particles in Ice Cores Using the Single-Particle Extinction and Scattering Method.

Environ Sci Technol

December 2024

Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, Bern 3012, Switzerland.

This study presents the integration of the single-particle extinction and scattering (SPES) method in a continuous flow analysis (CFA) setup. Continuous measurements with the instrument allow for the characterization of water-insoluble particles in ice cores at high resolution with a minimized risk of contamination. The SPES method can be used to investigate particles smaller than 1 μm, which previously could not be detected by instruments typically used in CFA.

View Article and Find Full Text PDF

Optimal power scheduling in real-time distribution systems using crow search algorithm for enhanced microgrid performance.

Sci Rep

December 2024

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, 03680, Ukraine.

Microgrids (MGs) have gained significant attention over the past two decades due to their advantages in service reliability, easy integration of renewable energy sources, high efficiency, and enhanced power quality. In India, low-voltage side customers face significant challenges in terms of power supply continuity and voltage regulation. This paper presents a novel approach for optimal power scheduling in a microgrid, aiming to provide uninterrupted power supply with improved voltage regulation (VR).

View Article and Find Full Text PDF

Background: Identifying spontaneous circulation during cardiopulmonary resuscitation (CPR) is challenging. Current methods, which involve intermittent and time-consuming pulse checks, necessitate pauses in chest compressions. This issue is problematic in both in-hospital cardiac arrest and out-of-hospital cardiac arrest situations, where resources for identifying circulation during CPR may be limited.

View Article and Find Full Text PDF

A well-designed scheduling plan that meets the practical constraints of the workshop is crucial for enhancing production efficiency in ship plane block assembly. Unlike traditional flow line scheduling problems, the scheduling optimization problem for ship plane block flow line involves dual resource constraints, including work teams and spare parts supply limitations. This can be seen as a Dual Resource Constrained Blocked Flow Shop Scheduling Problem (DRCBFSP).

View Article and Find Full Text PDF

N-Acetyltyrosine as a Biomarker of Parenteral Nutrition Administration in First-Tier Newborn Screening Assays.

Int J Neonatal Screen

December 2024

Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy NE, S110-3, Atlanta, GA 30341, USA.

Parenteral nutrition (PN) is a nutrient solution administered intravenously (IV) to premature babies. PN causes elevations of some amino acids in blood samples that are also biomarkers used in newborn screening (NBS). Therefore, PN status must be annotated by clinicians on dried blood spot (DBS) cards to reduce NBS laboratory burdens associated with potential false results; however, NBS laboratories continue to receive DBSs with misannotated PN status.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!