A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Creating HIV risk profiles for men in South Africa: a latent class approach using cross-sectional survey data. | LitMetric

Introduction: Engaging at-risk men in HIV prevention programs and services is a current priority, yet there are few effective ways to identify which men are at highest risk or how to best reach them. In this study we generated multi-factor profiles of HIV acquisition/transmission risk for men in Durban, South Africa, to help inform targeted programming and service delivery.

Methods: Data come from surveys with 947 men ages 20 to 40 conducted in two informal settlements from May to September 2017. Using latent class analysis (LCA), which detects a small set of underlying groups based on multiple dimensions, we identified classes based on nine HIV risk factors and socio-demographic characteristics. We then compared HIV service use between the classes.

Results: We identified four latent classes, with good model fit statistics. The older high-risk class (20% of the sample; mean age 36) were more likely married/cohabiting and employed, with multiple sexual partners, substantial age-disparity with partners (eight years younger on-average), transactional relationships (including more resource-intensive forms like paying for partner's rent), and hazardous drinking. The younger high-risk class (24%; mean age 27) were likely unmarried and employed, with the highest probability of multiple partners in the last year (including 42% with 5+ partners), transactional relationships (less resource-intensive, e.g., clothes/transportation), hazardous drinking, and inequitable gender views. The younger moderate-risk class (36%; mean age 23) were most likely unmarried, unemployed technical college/university students/graduates. They had a relatively high probability of multiple partners and transactional relationships (less resource-intensive), and moderate hazardous drinking. Finally, the older low-risk class (20%; mean age 29) were more likely married/cohabiting, employed, and highly gender-equitable, with few partners and limited transactional relationships. Circumcision (status) was higher among the younger moderate-risk class than either high-risk class (p < 0.001). HIV testing and treatment literacy score were suboptimal and did not differ across classes.

Conclusions: Distinct HIV risk profiles among men were identified. Interventions should focus on reaching the highest-risk profiles who, despite their elevated risk, were less or no more likely than the lower-risk to use HIV services. By enabling a more synergistic understanding of subgroups, LCA has potential to enable more strategic, data-driven programming and evaluation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7319107PMC
http://dx.doi.org/10.1002/jia2.25518DOI Listing

Publication Analysis

Top Keywords

transactional relationships
16
high-risk class
12
hazardous drinking
12
hiv risk
8
south africa
8
class
8
latent class
8
class 20%
8
age married/cohabiting
8
married/cohabiting employed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!