Stimuli-responsive semi-interpenetrating polymer network (semi-IPN) hydrogels form an important class of polymers for their tunable properties via molecular design. They are widely investigated for a diverse range of applications including drug delivery, sensors, actuators, and osmotic agents. However, in-depth studies on some of the critical design principles affecting diffusion/leaching of linear polymer from semi-IPN hydrogels are lacking. Herein, for the first time, by preparing a series of model semi-IPN hydrogels based on thermally responsive poly (N-isopropyl acrylamide) (PNIPAM) network and linear poly(sodium acrylate) (PSA), a systematic and quantitative study concerning linear polymer chain retention and swelling/deswelling kinetics is reported. The study shows that PSA retention is significantly affected not only by PSA molecular weight and concentration, but also by polymerization temperature, which could be linked to homogeneity and internal morphology of the hydrogel. Surprisingly, there is no obvious influence of crosslinking density of PNIPAM network toward PSA retention, while faster swelling and deswelling at higher crosslinking density are observed in terms of swelling rate constant and deswelling activation energy. These findings offer new insights on the factors affecting structural and physicochemical properties of such semi-IPN hydrogels, which should in turn serve as a general guideline for materials design.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.202000199DOI Listing

Publication Analysis

Top Keywords

semi-ipn hydrogels
16
stimuli-responsive semi-interpenetrating
8
semi-interpenetrating polymer
8
polymer network
8
linear polymer
8
pnipam network
8
psa retention
8
crosslinking density
8
design
4
design rationale
4

Similar Publications

The reduction in hyaluronic acid concentration and viscosity in the synovial fluid of patients struggling with osteoarthritis increases the abrasion of articular cartilage. The aim of this study was to design a semi-IPN hydrogel based on genipin-crosslinked carboxymethyl chitosan (CMCh) and glycerol to achieve long-term release of hyaluronic acid. The results showed that hydrogel comprising CMCh (3 % wt.

View Article and Find Full Text PDF

Annually, thousands of individuals suffer from skin injuries resulting from trauma, surgeries, or diabetes. Inadequate wound treatment can delay healing and increase the risk of severe infections. In this context, a promising synthetic polymer with potent antimicrobial properties, Poly{2-[(methacryloyloxy)ethyl]trimethylammonium chloride} (PMETAC), is synthesized and crosslinked with N,N'-Methylenebis(acrylamide) (BIS) in the presence of Chitosan (CH), a natural, biocompatible polysaccharide that promotes cell regeneration and provides additional beneficial properties.

View Article and Find Full Text PDF

The need for new biomaterials to meet the needs of advanced healthcare therapies is constantly increasing. Polysaccharide-based matrices are considered extremely promising because of their biocompatibility and soft structure; however, their use is limited by their poor mechanical properties. In this light, a strategy for the reinforcement of dextran-based hydrogels and interpenetrated polymer networks (semi-IPNs and IPNs) is proposed, which will introduce multifunctional crosslinkers that can modify the network crosslinking density.

View Article and Find Full Text PDF

Influence of agarose in semi-IPN hydrogels for sustained Polymyxin B release.

Colloids Surf B Biointerfaces

March 2025

Laboratory of Bio & Nano Materials, Drug Delivery and Controlled Release, Department of Microbiology, Faculty of Health Sciences, University of Talca, Talca, Chile. Electronic address:

Hydrogels (HGs) are 3-D polymeric networks with high water content, making them appropriate for biomedical applications such as drug delivery systems. This study examines the impact of agarose in semi-interpenetrating polymer networks (Semi-IPNs) based on poly(acrylic acid) (p(AA)), N, N' Methylenebis(acrylamide) (MBA) and agarose (AGA) on the sustained release of Polymyxin B (PolB). Agarose incorporation improved the mechanical strength, swelling behavior and drug retention capacity of the HG.

View Article and Find Full Text PDF

Gel properties of sheep's hoof gelatin-dietary polysaccharide interpenetrating polymer network complex gels with application in low fat lamb patties.

Food Chem

March 2025

Key Laboratory of Agricultural Product Processing and Quality Control of Specialty(Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.

In order to explore new fat substitutes, we compared three dietary polysaccharides Pectin(PEC), Inulin (INU), and Konjac glucomannan (KGM) compounded with sheep hoof gelatin using different cross-linking methods [transglutaminase (Tg) enzyme; Tg enzyme & Ca] for the preparation of Semi-interpenetrating polymer network (Semi-IPN) and fully interpenetrating polymer network (IPN) gels. The optimal ratio was determined by comprehensively evaluating the addition of hydrogel to the lamb patties at different ratios. The results showed that PEC-IPN exhibited superior stability and textural properties compared to the Semi-IPN gels and control gels in each group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!