The tumor microenvironment (TME) is an evolutionally low-level and embryonically featured tissue comprising heterogenic populations of malignant and stromal cells as well as noncellular components. Under radiotherapy (RT), the major modality for the treatment of malignant diseases [1], TME shows an adaptive response in multiple aspects that affect the efficacy of RT. With the potential clinical benefits, interests in RT combined with immunotherapy (IT) are intensified with a large scale of clinical trials underway for an array of cancer types. A better understanding of the multiple molecular aspects, especially the cross talks of RT-mediated energy reprogramming and immunoregulation in the irradiated TME (ITME), will be necessary for further enhancing the benefit of RT-IT modality. Coming studies should further reveal more mechanistic insights of radiation-induced instant or permanent consequence in tumor and stromal cells. Results from these studies will help to identify critical molecular pathways including cancer stem cell repopulation, metabolic rewiring, and specific communication between radioresistant cancer cells and the infiltrated immune active lymphocytes. In this chapter, we will focus on the following aspects: radiation-repopulated cancer stem cells (CSCs), hypoxia and re-oxygenation, reprogramming metabolism, and radiation-induced immune regulation, in which we summarize the current literature to illustrate an integrated image of the ITME. We hope that the contents in this chapter will be informative for physicians and translational researchers in cancer radiotherapy or immunotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-030-44518-8_10 | DOI Listing |
Microrna
January 2025
Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 20130, India.
MicroRNA (miRNA) modulation has emerged as a promising strategy in cancer immunotherapy, particularly in converting "cold" tumors with limited immune cell infiltration into "hot" tumors responsive to immunotherapy. miRNAs regulate immune cell recruitment and activation within the tumor microenvironment, influencing tumor behavior targeting specific miRNAs in cold tumors aims to enhance the immune response, potentially improving therapeutic efficacy. Despite ongoing research challenges, such as tumor complexity and treatment resistance, miRNA-based therapies offer personalized approaches with potential ethical considerations.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.
Background: Dedifferentiated liposarcoma (DDLPS) is a rare mesenchymal cancer originating from the adipose tissue, with poor survival rates for most patients, highlighting the critical need for novel treatment options.
Case Description: This report examines the efficacy and safety of sequential pre-treatment with the marine-derived alkaloid trabectedin followed by checkpoint inhibition using the anti-PD-1 antibody nivolumab in a 63-year-old male patient with unresectable retroperitoneal DDLPS. Treatment was initiated at the time of the seventh relapse as part of the NitraSarc phase 2 multicenter trial for inoperable soft tissue sarcoma conducted by the German Interdisciplinary Sarcoma Group (GISG-15, ).
Int J Genomics
January 2025
Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing, China.
() is associated with the development of various stomach diseases, one of the major risk factors for stomach adenocarcinoma (STAD). The infection score between tumor and normal groups was compared by single-sample gene set enrichment analysis (ssGSEA). The key modules related to infection were identified by weighted gene coexpression network analysis (WGCNA), and functional enrichment analysis was conducted on these module genes.
View Article and Find Full Text PDFJACS Au
January 2025
Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
Cancer cells with high expression of aldehyde dehydrogenase 1A1 (ALDH1A1) are more resistant to chemotherapy, contribute to tumor progression, and are associated with poor clinical outcomes. ALDH1A1 plays a critical role in protecting cells from reactive aldehydes and, in the case of stem cells, regulates their differentiation through the retinoic acid signaling pathway. Despite the importance of this enzyme, methods to study ALDH1A1 high-expressing cancer cells in vivo remain limited.
View Article and Find Full Text PDFBiochem Biophys Rep
December 2024
Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
Background: Renal cell carcinoma (RCC) is a common urological cancer globally and shows a favorable prognosis in early stages of the tumor progression. Due to the poor prognosis for metastatic RCC patients, it is crucial to explore the molecular biology of RCC progression to establish efficient diagnostic and therapeutic markers for these patients. Long non-coding RNAs (lncRNAs) have critical roles in regulation of tumor cell proliferation, migration, and apoptosis during RCC progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!