In this work, an effective hybrid strategy was developed for tandem conversion of biomass to furfurylamine with tin-based solid acid Sn-Maifanitum stone and recombinant Escherichia coli whole cells harboring ω-transaminase. 90.3 mM furfural was obtained from corncob (75 g/L) at 170 °C for 0.5 h over Sn-Maifanitum stone catalyst (3.5 wt%) in the aqueous media (pH 1.0), which could be further bioconverted into furfurylamine at 74.0% yield (based on biomass-derived furfural) within 20.5 h. Finally, an efficient recycling and reuse of Sn-Maifanitum stone catalyst and immobilized Escherichia coli AT2018 whole-cell biocatalyst was developed for the synthesis of furfurylamine from biomass in the one-pot reaction system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-020-03334-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!