Applying machine learning to detect early stages of cardiac remodelling and dysfunction.

Eur Heart J Cardiovasc Imaging

Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 33, Block h, Box 7001, B 3000 Leuven, Belgium.

Published: September 2021

Aims: Both left ventricular (LV) diastolic dysfunction (LVDD) and hypertrophy (LVH) as assessed by echocardiography are independent prognostic markers of future cardiovascular events in the community. However, selective screening strategies to identify individuals at risk who would benefit most from cardiac phenotyping are lacking. We, therefore, assessed the utility of several machine learning (ML) classifiers built on routinely measured clinical, biochemical, and electrocardiographic features for detecting subclinical LV abnormalities.

Methods And Results: We included 1407 participants (mean age, 51 years, 51% women) randomly recruited from the general population. We used echocardiographic parameters reflecting LV diastolic function and structure to define LV abnormalities (LVDD, n = 252; LVH, n = 272). Next, four supervised ML algorithms (XGBoost, AdaBoost, Random Forest (RF), Support Vector Machines, and Logistic regression) were used to build classifiers based on clinical data (67 features) to categorize LVDD and LVH. We applied a nested 10-fold cross-validation set-up. XGBoost and RF classifiers exhibited a high area under the receiver operating characteristic curve with values between 86.2% and 88.1% for predicting LVDD and between 77.7% and 78.5% for predicting LVH. Age, body mass index, different components of blood pressure, history of hypertension, antihypertensive treatment, and various electrocardiographic variables were the top selected features for predicting LVDD and LVH.

Conclusion: XGBoost and RF classifiers combining routinely measured clinical, laboratory, and electrocardiographic data predicted LVDD and LVH with high accuracy. These ML classifiers might be useful to pre-select individuals in whom further echocardiographic examination, monitoring, and preventive measures are warranted.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ehjci/jeaa135DOI Listing

Publication Analysis

Top Keywords

machine learning
8
routinely measured
8
measured clinical
8
lvdd lvh
8
xgboost classifiers
8
predicting lvdd
8
lvdd
6
lvh
5
classifiers
5
applying machine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!