The recent emergence of a multidrug-resistant yeast, , has drawn attention to the closely related species from the complex that include , and the recently identified . Here, we used antifungal susceptibility testing and whole-genome sequencing (WGS) to investigate drug resistance and genetic diversity among isolates of complex from different geographic areas in order to assess population structure and the extent of clonality among strains. Although most isolates of all four species were genetically distinct, we detected evidence of the in-hospital transmission of and in one hospital in Panama, indicating that these species are also capable of causing outbreaks in healthcare settings. We also detected evidence of the rising azole resistance among isolates of and in Colombia, Panama, and Venezuela linked to substitutions in gene as well as amplification of this gene in in isolates in Colombia suggesting the presence of evolutionary pressure for developing azole resistance in this region. Our results demonstrate that these species need to be monitored as possible causes of outbreaks of invasive infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7298116 | PMC |
http://dx.doi.org/10.3389/fgene.2020.00554 | DOI Listing |
Front Cell Infect Microbiol
December 2024
Gynaecology Department, Hua County People's Hospital, Anyang, China.
Introduction: The irrational use of antibiotics has facilitated the emergence of multidrug- resistant ., undermining the effectiveness of the currently available antibiotics. Consequently, there is an urgent need to explore new approaches, with phage therapy emerging as a promising alternative.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China.
In the post-COVID-19 era, drug-resistant bacterial infections emerge as one of major death causes, where multidrug-resistant Acinetobacter baumannii (MRAB) and drug-resistant Pseudomonas aeruginosa (DRPA) represent primary pathogens. However, the classical antibiotic strategy currently faces the bottleneck of drug resistance. We develop an antimicrobial strategy that applies the selective delivery of CRISPR/Cas9 plasmids to pathogens with biomimetic cationic hybrid vesicles (BCVs), irrelevant to bacterial drug resistance.
View Article and Find Full Text PDFMol Biotechnol
December 2024
Department of Biotechnology, University of Mianwali, Punjab, 42200, Pakistan.
In Salmonella Typhimurium, efflux pump proteins, such as AcrD actively expel drugs and hazardous chemicals from bacterial cells, resulting in treatment failure and the emergence of antibiotic-resistant variants. Focusing on AcrD may lead to the development of novel antimicrobials against multidrug-resistant bacteria. However, challenges persist in achieving high selectivity, low toxicity, and effective bacterial penetration.
View Article and Find Full Text PDFInt J Antimicrob Agents
December 2024
Department of Pharmacy, Singapore General Hospital, Singapore; Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore; Singhealth Duke-NUS Medicine Academic Clinical Programme, Singapore. Electronic address:
Probiotics Antimicrob Proteins
December 2024
National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
The escalating prevalence of antibiotic-resistant bacteria has emerged as a formidable threat to global health, and the quest for alternative antimicrobial agents is imperative. Cecropins, a class of antimicrobial peptides (AMPs), have garnered attention due to their potent bactericidal properties. This investigation delves into the antibacterial prowess of Cecropin A (CA) and Cecropin AD (CAD), showcasing their robust activity against Gram-negative bacteria, inclusive of multidrug-resistant bacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!