Piano performance involves several levels of motor abundancy. Identification of kinematic strategies that enhance performance and reduce risks of practice-related musculoskeletal disorders (PRMD) represents an important research topic since more than half of professional pianists might suffer from PRMD during their career. Studies in biomechanics have highlighted the benefits of using proximal upper-limb joints to reduce the load on distal segments by effectively creating velocity and force at the finger-key interaction. If scientific research has documented postural and expressive features of pianists' trunk motion, there is currently a lack of scientific evidence assessing the role of trunk motion in sound production and in injury prevention. We address this gap by integrating motion of the pelvis and thorax in the analysis of both upper-limb linear velocities and joint angular contribution to endpoint velocities. Specifically, this study aims to assess kinematic features of different types of touch and articulation and the impact of trunk motion on these features. Twelve pianists performed repetitive loud and slow-paced keystrokes. They were asked to vary (i) body implication (use of trunk and upper-limb motion or use of only upper-limb motion), (ii) touch (struck touch, initiating the attack with the fingertip at a certain distance from the key surface, or pressed touch, initiating the attack with the fingertip in contact with the key surface), and (iii) articulation (, short finger-key contact time, or , sustained finger-key contact time). Data were collected using a 3D motion capture system and a sound recording device. Results show that body implication, touch, and articulation modified kinematic features of loud keystrokes, which exhibited not only downward but also important forward segmental velocities (particularly in pressed touch and articulation). Pelvic anterior rotation had a prominent role in the production of loud tones as it effectively contributed to creating forward linear velocities at the upper limb. The reported findings have implications for the performance, teaching, and research domains since they provide evidence of how pianists' trunk motion can actively contribute to the sound production and might not only be associated with either postural or expressive features.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7298114 | PMC |
http://dx.doi.org/10.3389/fpsyg.2020.01159 | DOI Listing |
Nat Commun
January 2025
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
Aerial manipulators can manipulate objects while flying, allowing them to perform tasks in dangerous or inaccessible areas. Advanced aerial manipulation systems are often based on rigid-link mechanisms, but the balance between dexterity and payload capacity limits their broader application. Combining unmanned aerial vehicles with continuum manipulators emerges as a solution to this trade-off, but these systems face challenges with large actuation systems and unstable control.
View Article and Find Full Text PDFFront Robot AI
January 2025
Research Institute of Electrical Communication, Tohoku University, Sendai, Japan.
This paper explores the applicability of bicycle-inspired balance control in a quadruped robot model. Bicycles maintain stability and change direction by intuitively steering the handle, which induces yaw motion in the body frame and generates an inertial effect to support balance. Inspired by this balancing strategy, we implemented a similar mechanism in a quadruped robot model, introducing a yaw trunk joint analogous to a bicycle's steering handle.
View Article and Find Full Text PDFBMC Musculoskelet Disord
January 2025
Department of Physiotherapy, Iranian Center of Excellence in Physiotherapy, Rehabilitation Research Center, School of Rehabilitation Sciences, Iran University of Medical Sciences, Madadkaran All., Shahnazari St., Madar Sq., Mirdamad Blvd., Tehran, Iran.
Introduction: Groin pain is a common issue among athletes. Adductor-related pain is known as the most common cause of groin pain. Although, non-operative treatments have limited efficacy, Capacitive and Resistive Energy Transfer (TECAR), can be used in the treatment of musculoskeletal conditions.
View Article and Find Full Text PDFBMC Musculoskelet Disord
January 2025
Lecturer of Physical Therapy, Basic Science Department, Faculty of Physical Therapy, Suez University, Suez, Egypt.
Background: pelvis and shoulder are deeply integrated. They are connected by myofascial slings. The pelvic and spinal posture affects the position of the scapula and the activity of its muscles and affects acromio-humeral distance and so that affects shoulder movement.
View Article and Find Full Text PDFData Brief
June 2024
NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Nutrition and Movement Sciences, Maastricht, the Netherlands.
Data Collection Process: This dataset includes running biomechanics measured using an instrumented treadmill combined with three- dimensional motion capture and surface muscle activation among 19 healthy participants (10 males, 9 females, mean ± SD age 23.6 ± 3.7 years, body height 174.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!