Long-term survival of an animal species depends on development being robust to environmental variations and climate changes. We used to study how mechanisms that sense environmental changes trigger adaptive responses that ensure animals develop properly. In water, the nervous system induces an adaptive response that reinforces vulval development through an unknown backup signal for vulval induction. This response involves the heterotrimeric G-protein EGL-30//G acting in motor neurons. It also requires body-wall muscle, which is excited by EGL-30-stimulated synaptic transmission, suggesting a behavioral function of neurons induces backup signal production from muscle. We now report that increased acetylcholine during liquid growth activates an EGL-30-Rho pathway, distinct from the synaptic transmission pathway, that increases Wnt production from motor neurons. We also provide evidence that this neuronal Wnt contributes to EGL-30-stimulated vulval development, with muscle producing a parallel developmental signal. As diverse sensory modalities stimulate motor neurons via acetylcholine, this mechanism enables broad sensory perception to enhance Wnt-dependent development. Thus, sensory perception improves animal fitness by activating distinct neuronal functions that trigger adaptive changes in both behavior and developmental processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.186080 | DOI Listing |
Pflugers Arch
January 2025
Division of Neurophysiology, Department of Physiology, Hyogo Medical University, Hyogo, 663 8501, Japan.
The nucleus tractus solitarius (NTS) contains neurons that relay sensory swallowing commands information from the oropharyngeal cavity and swallowing premotor neurons of the dorsal swallowing group (DSG). However, the spatio-temporal dynamics of the interplay between the sensory relay and the DSG is not well understood. Here, we employed fluorescence imaging after microinjection of the calcium indicator into the NTS in an arterially perfused brainstem preparation of rat (n = 8) to investigate neuronal population activity in the NTS in response to superior laryngeal nerve (SLN) stimulation.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Physical Therapy, Hangzhou Geriatric Hospital, 310022 Hangzhou, Zhejiang, China.
Background: Observation, execution, and imitation of target actions based on mirror neuron network (MNN) have become common physiotherapy strategies. Electrical stimulation (ES) is a common intervention to improve muscle strength and motor control in rehabilitation treatments. It is possible to enhance MNN's activation by combining motor execution (ME) and motor imitation (MI) with ES simultaneously.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80125 Naples, Italy.
Parkinson's disease (PD) is characterized by a slow, short-stepping, shuffling gait pattern caused by a combination of motor control limitations due to a reduction in dopaminergic neurons. Gait disorders are indicators of global health, cognitive status, and risk of falls and increase with disease progression. Therefore, the use of quantitative information on the gait mechanisms of PD patients is a promising approach, particularly for monitoring gait disorders and potentially informing therapeutic interventions, though it is not yet a well-established tool for early diagnosis or direct assessment of disease progression.
View Article and Find Full Text PDFJ Clin Med
January 2025
Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B blok 6, 71-065 Szczecin, Poland.
Amyotrophic lateral sclerosis (ALS) is a complex, progressive neurodegenerative disorder characterized by the degeneration of motor neurons in the brain, brainstem, and spinal cord. Several neuroimaging techniques can help reveal the pathophysiology of ALS. One of these is the electroencephalogram (EEG), a noninvasive and relatively inexpensive tool for examining electrical activity of the brain with excellent temporal precision.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands.
Semaphorin 3A (Sema3A) is an axon guidance molecule, which is also abundant in the adult central nervous system (CNS), particularly in perineuronal nets (PNNs). PNNs are extracellular matrix structures that restrict plasticity. The cellular sources of Sema3A in PNNs are unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!