Elevated levels of reactive oxygen species can cause oxidative stress, which could lead to membrane damage, decreased fertility, and spermatozoan morphological deformities. Antioxidants can be supplemented to reduce the impacts of oxidative stress. The objective of this study was to determine the effects of supplementing quercetin (0.25, 0.50, 0.75 mM) during the thawing and incubation of frozen-thawed boar semen on spermatozoan characteristics, IVF kinetics (n = 400) and subsequent embryonic development (n = 1340). Spermatozoa were evaluated for motility, viability, and membrane lipid peroxidation levels at 0, 2, 4, 6, 8, and 10 h after thawing. Embryos were evaluated for IVF kinetics 12 h after IVF (penetration, polyspermy, male pronucleus formation, IVF efficiency) and cleavage and blastocyst formation at 48 h and 144 h after IVF, respectively. Spermatozoa supplemented with 0.25 mM quercetin had significantly higher (P < 0.05) motility (51.67±8.50 %) and percent of viable cells (61.21 ± 2.44 %) compared to all other treatments at 10 h after thawing, in addition to having significantly (P < 0.05) lower levels of hydroperoxide (3.38 ± 0.88 μM/10cells). There were no differences in penetration rates and male pronucleus formation between treatment groups. Supplementation of quercetin significantly decreased (P < 0.05) polyspermy and significantly increased (P < 0.05) the percentage of embryos reaching blastocyst stage of development by 144 h after IVF compared to no supplementation. Results indicated that supplementing frozen-thawed boar semen with 0.25 mM quercetin improves sperm characteristics up to 10 h after thawing and decreases polyspermy while improving early embryonic development in pigs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.repbio.2020.06.002 | DOI Listing |
Commun Earth Environ
January 2025
Center for Volatile Interactions (VOLT), Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark.
Permafrost is a considerable carbon reservoir harboring up to 1700 petagrams of carbon accumulated over millennia, which can be mobilized as permafrost thaws under global warming. Recent studies have highlighted that a fraction of this carbon can be transformed to atmospheric volatile organic compounds, which can affect the atmospheric oxidizing capacity and contribute to the formation of secondary organic aerosols. In this study, active layer soils from the seasonally unfrozen layer above the permafrost were collected from two distinct locations of the Greenlandic permafrost and incubated to explore their roles in the soil-atmosphere exchange of volatile organic compounds.
View Article and Find Full Text PDFAntioxidants (Basel)
November 2024
Laboratory of Animal Physiology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
Reactive Oxygen Species (ROS) play an important role in sperm physiology. They are required in processes such as capacitation and fertilization. However, the exposure of spermatozoa to ROS generated from internal or external sources may create a potentially detrimental redox imbalance.
View Article and Find Full Text PDFTheriogenology
January 2025
Robinson Research Institute, The University of Adelaide, South Australia, Australia; Discipline of Reproduction and Development, School of Biomedicine, The University of Adelaide, South Australia, Australia. Electronic address:
In vitro embryo production (IVP) is used in the cattle industry to increase the rate of genetic gain. IVP uses semen that has been frozen and thawed, a process that renders sperm less viable than sperm from fresh semen. Granulocyte macrophage colony stimulating factor (GM-CSF) is present in bovine seminal plasma, while its receptor is present on bovine sperm.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
Excessive production of reactive oxygen species (ROS) during cryopreservation and post-thawing affects sperm quality and subsequent fertilizing capacity. Nanoparticles (NPs) with antioxidative properties can improve sperm function and male fertility. The aim of this study was to assess the effect of 100 µM ρ-coumaric acid (ρ-CA), 0.
View Article and Find Full Text PDFPol J Vet Sci
September 2024
Department of Clinics, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Namakkal-637 001, India.
The aim of this study was to assess the in vitro penetration rate of antioxidant enriched frozen thawed Kangayam bull semen. For the current investigation, 5-7-year-old Kangayam bulls were used. The semen was collected twice per week and two ejaculates were collected each time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!