Pluripotent stem cell-derived cholangiocytes and cholangiocyte organoids.

Methods Cell Biol

INSERM Unité Mixte de Recherche (UMR_S) 1193, Villejuif, France; UMR_S 1193, Université Paris-Sud/Paris-Saclay, Villejuif, France; Département Hospitalo-Universitaire Hepatinov, Villejuif, France.

Published: July 2021

The development of protocols for pluripotent stem cell (PSC) differentiation into cholangiocytes and cholangiocyte organoids in three-dimensional structures represent a huge advance in both research and medical fields because of the limited access to primary human cholangiocytes and the potential bias induced by animal models used to study cholangiopathies in vivo. PSC-derived cholangiocyte organoids consisting of either cysts with luminal space or branching tubular structures are composed of cells with apico-basal polarity that can fulfill cholangiocyte functions like the transport of bile salts. Several protocols of PSC differentiation have already been published but we added to the detailed protocol we describe here some notes or advice to facilitate its handling by new users. We also propose detailed protocols to carry out some of the characterization analyses using immunofluorescence to study the expression of specific markers and a functionality test to visualize bile acid transport using cholyl-lysyl-fluorescein (CLF).

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.mcb.2020.03.011DOI Listing

Publication Analysis

Top Keywords

cholangiocyte organoids
12
pluripotent stem
8
cholangiocytes cholangiocyte
8
psc differentiation
8
stem cell-derived
4
cell-derived cholangiocytes
4
cholangiocyte
4
organoids development
4
development protocols
4
protocols pluripotent
4

Similar Publications

Liver tissues, composed of hepatocytes, cholangiocytes, stellate cells, Kupffer cells, and sinusoidal endothelial cells, are differentiated from endodermal and mesodermal germ layers. By mimicking the developmental process of the liver, various differentiation protocols have been published to generate human liver organoids (HLOs) in vitro using induced pluripotent stem cells (iPSCs). However, HLOs derived solely from the endodermal germ layer often encounter technical hurdles such as insufficient maturity and functionality, limiting their utility for disease modeling and hepatotoxicity assays.

View Article and Find Full Text PDF

Cholangiocyte organoids for disease, cancer, and regenerative medicine.

Eur J Cell Biol

December 2024

Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.

The biliary tract is a ductal network comprising the intrahepatic (IHBDs) and extrahepatic bile duct (EHBDs). Biliary duct disorders include cholangitis, neoplasms, and injury. However, the underlying mechanisms are not fully understood.

View Article and Find Full Text PDF

Obtaining stable hepatic cells in culture poses a significant challenge for liver studies. Bearing this in mind, an optimized method is depicted utilizing human induced pluripotent stem cells (hiPSCs) to generate 3D cultures of human hepatic organoids (HHOs). The utilization of HHOs offers a valuable approach to understanding liver development, unraveling liver diseases, conducting high-throughput studies for drug development, and exploring the potential for liver transplantation.

View Article and Find Full Text PDF

Understanding cell fate regulation in the liver is necessary to advance cell therapies for hepatic disease. Liver progenitor cells (LPC) contribute to tissue regeneration after severe hepatic injury yet signals instructing progenitor cell dynamics and fate are largely unknown. The Tissue Inhibitor of Metalloproteinases, TIMP1 and TIMP3 control the sheddases ADAM10 and ADAM17, key for NOTCH activation.

View Article and Find Full Text PDF

The limited replicative potential of primary hepatocytes (Hep) is a major hurdle for obtaining sufficient quantity and quality hepatocytes during cell therapy in patients with liver failure. Intrahepatic cholangiocyte organoids (ICOs) derived from intrahepatic bile ducts differentiate into both hepatocytes and cholangiocytes . Here, we studied effects of transplanting ICOs and Hep in chronic liver injury mice models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!