Fluoxetine chronic exposure affects growth, behavior and tissue structure of zebrafish.

Comp Biochem Physiol C Toxicol Pharmacol

Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Biologia, Universidade de Brasília, Asa Norte, 70910-900 Brasília, Distrito Federal, Brazil. Electronic address:

Published: November 2020

Fluoxetine (FLX) is among the top 100 pharmaceutical prescribed annually worldwide and consequently is often detected in wastewater treatment plant effluent and surface waters, in concentrations up to 2.7 and 0.33 μg/L, respectively. Despite the presence of FLX in surface waters, little is known about its chronic effects in fish. Thus, this study aimed at investigating the chronic toxicity of FLX to Danio rerio adults. Rate of weight gain, behavior (feeding and swimming activity) and tissue organization (liver and intestine) were evaluated, after 30 days exposure. A lower rate of weight gain was observed at 100 μg/L FLX. The food intake time decreased, showing a decrease in fish appetite. The preference for the upper aquarium layer was observed at 10 and 100 μg/L of FLX, indicating an inhibition of the stress level (anxiolytic effect). Mild to moderate damage of hepatic tissue and a decrease epithelium height and increase in villus height of intestine were observed in fish exposed to concentrations as low as 0.01 μg/L. Based on obtained results, chronic exposure of fish to FLX could affect swimming and feeding behavior and alter morphological structure of liver and intestine tissues at environmental levels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpc.2020.108836DOI Listing

Publication Analysis

Top Keywords

chronic exposure
8
surface waters
8
rate weight
8
weight gain
8
liver intestine
8
observed 100 μg/l
8
100 μg/l flx
8
flx
6
fluoxetine chronic
4
exposure growth
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!