Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The upper bound of enzyme concentration for accurately estimating the parameters in Michaelis-Menten (MM) equation is not completely determined and still under discussion, even though many researchers have investigated the equation's validity for a long time. In the paper, we broadly investigated the correlation between the system of ordinary differential equations for monosubstrate irreversible enzyme reaction (HMM-system) and its derivative MM equation focusing on the relationship between initial enzyme concentration [E] and Michaelis constant K by numerical simulation. According to the results, the initial reaction velocity v is still a function of initial substrate concentration [S] at [E]
Download full-text PDF
Source
http://dx.doi.org/10.1016/j.biochi.2020.06.002 DOI Listing Publication Analysis
Top Keywords
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!