Nanocomposites (NCs) of crosslinked polyaniline (CPA)-coated oxidized carbon nanomaterials (OXCNMs) were fabricated as a very sensitive and simple electrochemical sensor to be utilized in 2,4-dichlorophenol (2,4-DCPH) detection. CPA/OXCNMs NCs were prepared by chemical copolymerization of polyaniline with triphenylamine and p-phenylenediamine in the presence of OXCNMs. The CPA/GO-OXSWCNTNCs exhibited a higher affinity for the oxidation of chlorophenols compared to the glassy carbon electrode (GCE), CPA/GCE, and other NCs. Cyclic voltammetry was performed to investigate and assess the electrocatalytic oxidation of 2,4-DCPH on the modified GCE. The compound yielded a well-defined voltammetric response in a Britton-Robinson buffer (pH 5) at 0.54 V (vs. silver chloride electrode). Quantitative determination of 2,4-DCPH was performed by differential pulse voltammetry under optimal conditions in the concentration range of 0.05 to 1.2 nmol L-1, and a linear calibration graph was obtained. The detection limit (S/N = 3) was found to be 4.2 nmol L-1. In addition, the results demonstrated that the CPA/GO-OXSWCNTs/GCE sensor exhibited a strong anti-interference ability, reproducibility, and stability. The prepared CPA/GO-OXSWCNTs/GCE sensor was used to rapidly detect 2,4-DCPH with a high degree of sensitivity in fish farm water with proven levels of satisfactory recoveries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7316237PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0234815PLOS

Publication Analysis

Top Keywords

electrochemical sensor
8
carbon nanomaterials
8
nmol l-1
8
cpa/go-oxswcnts/gce sensor
8
rapid sensitive
4
sensitive electrochemical
4
sensor
4
sensor cross-linked
4
cross-linked polyaniline/oxidized
4
polyaniline/oxidized carbon
4

Similar Publications

synthesis of a UIO-66-NH@TiC composite for advanced electrochemical detection of acetaminophen.

Nanoscale

January 2025

Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd, Wuhan, China.

Acetaminophen (AP) is a widely used analgesic and antipyretic drug, but its excessive use poses health risks and contributes to environmental contamination. In response to the need for rapid, accurate, and cost-effective detection methods, we developed a highly sensitive and selective electrochemical sensor for AP. The sensor was based on a composite of UIO-66-NH (UN) and an MXene (TiC).

View Article and Find Full Text PDF

Molecular junctions (MJs) are celebrated nanoelectronic devices for mimicking conventional electronic functions, including rectifiers, sensors, wires, switches, transistors, negative differential resistance, and memory, following an understanding of charge transport mechanisms. However, capacitive nanoscale molecular junctions are rarely seen. The present work describes electrochemically (E-Chem) grown covalently attached molecular thin films of 10, 14.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) play a critical role in regulating various physiological processes. To gain a comprehensive understanding of their distinct functions in different physiological events, it is imperative to detect binary ROS simultaneously. However, the development of the sensing method capable of binary ROS detection remains a significant challenge.

View Article and Find Full Text PDF

A bibliometric and visualization analysis of electrochemical biosensors for early diagnosis of eye diseases.

Front Med (Lausanne)

January 2025

Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China.

Electrochemical biosensors can provide an economical, accurate and rapid method for early screening of disease biomarkers in clinical medicine due to their high sensitivity, selectivity, portability, low cost and easy manufacturing, and multiplexing capability. Tear, a fluid naturally secreted by the human body, is not only easily accessible but also contains a great deal of biological information. However, no bibliometric studies focus on applying electrochemical sensors in tear/eye diseases.

View Article and Find Full Text PDF

Introduction: The transition to electric vehicles (EVs) has highlighted the need for efficient diagnostic methods to assess the state of health (SoH) of lithium-ion batteries (LIBs) at the end of their life cycle. Electrochemical Impedance Spectroscopy (EIS) offers a non-invasive technique for determining battery degradation. However, automating this process in industrial settings remains a challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!