To test whether the products of procaine hydrolysis have local anesthetic actions resembling those of procaine, the authors compared the ability of procaine and its metabolites diethylaminoethanol (DEAE) and para-aminobenzoic acid (PABA) to block compound action potentials in excised, desheathed frog and rat sciatic nerves. Studies were performed in solutions of impermeant buffers at pH 7.4 (corresponding to mammalian physiologic pH) and at pH 9.2 (close to the pKa of procaine and DEAE) to test for extracellular pH-dependent increases in drug permeation and potency. Both procaine and DEAE inhibited compound action potentials at pH 7.4 and 9.2 in a reversible and dose-dependent manner, and both were approximately ten-fold more potent at pH 9.2 than at pH 7.4, procaine inhibiting the action potential height by 50% at 0.15 mM (pH 9.2) and 1.1 mM (pH 7.4), DEAE at 4 mM (pH 9.2) and 70 mM (pH 7.4). In contrast, PABA at concentrations up to 25 mM and at either pH failed to inhibit compound action potentials, and did not modify the effects of DEAE when both drugs were given together. Procaine produced greater use-dependent block at the higher pH and at higher stimulation rates (100 Hz vs. 40 Hz); DEAE produced almost no use-dependent block. These observations suggest: 1) that DEAE might account for some of the neuropharmacologic activity of procaine in techniques that favor the accumulation of metabolites (such as those requiring large doses or prolonged infusions); and 2) that alkalinization of procaine and DEAE solutions appears to increase their potency for both resting and use-dependent block of action potentials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00000542-198804000-00005 | DOI Listing |
J Neural Eng
January 2025
Physical Medicine and Rehabilitation, The MetroHealth System, 2500 Metrohealth Dr, Cleveland, OH 44109, USA, Cleveland, Ohio, 44109-1998, UNITED STATES.
Direct current (DC) electrical block of peripheral nerve conduction shows promise for clinical applications to treat spasticity, pain, and cardiac arrhythmias. Most previous work has used invasive nerve cuffs. Here we investigate the potential of non-invasive transcutaneous direct current motor block (tDCB).
View Article and Find Full Text PDFScience
January 2025
Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA.
The mechanisms by which the brain replays neural activity sequences remain unknown. Recording from large ensembles of hippocampal place cells in freely behaving rats, we observed that replay content is strictly organized over multiple timescales and governed by self-avoidance. After movement cessation, replays avoided the animal's previous path for 3 seconds.
View Article and Find Full Text PDFChaos
January 2025
Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, Marseille 13005, France.
J Gen Physiol
March 2025
Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
Voltage-gated Ca2+ channels (VGCCs) are highly expressed throughout numerous biological systems and play critical roles in synaptic transmission, cardiac excitation, and muscle contraction. To perform these various functions, VGCCs are highly regulated. Inactivation comprises a critical mechanism controlling the entry of Ca2+ through these channels and constitutes an important means to regulate cellular excitability, shape action potentials, control intracellular Ca2+ levels, and contribute to long-term potentiation and depression.
View Article and Find Full Text PDFFront Neuroinform
January 2025
Centre Borelli, Université Paris Cité, UMR 9010, CNRS, Paris, France.
This article develops a fundamental insight into the behavior of neuronal membranes, focusing on their responses to stimuli measured with power spectra in the frequency domain. It explores the use of linear and nonlinear (quadratic sinusoidal analysis) approaches to characterize neuronal function. It further delves into the random theory of internal noise of biological neurons and the use of stochastic Markov models to investigate these fluctuations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!