Seasonal influenza A viruses of humans evolve rapidly due to strong selection pressures from host immune responses, principally on the hemagglutinin (HA) viral surface protein. Based on mouse transmission experiments, a proposed mechanism for immune evasion consists of increased avidity to host cellular receptors, mediated by electrostatic charge interactions with negatively charged cell surfaces. In support of this, the HA charge of the globally circulating H3N2 has increased over time since its pandemic. However, the same trend was not seen in H1N1 HA sequences. This is counter-intuitive, since immune escape due to increased avidity (due itself to an increase in charge) was determined experimentally. Here, we explore whether patterns of local charge of H1N1 HA can explain this discrepancy and thus further associate electrostatic charge with immune escape and viral evolutionary dynamics. Measures of site-wise functional selection and expected charge computed from deep mutational scan data on an early H1N1 HA yield a striking division of residues into three groups, separated by charge. We then explored evolutionary dynamics of these groups from 1918 to 2008. In particular, one group increases in net charge over time and consists of sites that are evolving the fastest, that are closest to the receptor binding site (RBS), and that are exposed to solvent (i.e., on the surface). By contrast, another group decreases in net charge and consists of sites that are further away from the RBS and evolving slower, but also exposed to solvent. The last group consists of those sites in the HA core, with no change in net charge and that evolve very slowly. Thus, there is a group of residues that follows the same trend as seen for the entire H3N2 HA. It is possible that the H1N1 HA is under other biophysical constraints that result in compensatory decreases in charge elsewhere on the protein. Our results implicate localized charge in HA interactions with host cells, and highlight how deep mutational scan data can inform evolutionary hypotheses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7316228PMC
http://dx.doi.org/10.1371/journal.pcbi.1007892DOI Listing

Publication Analysis

Top Keywords

charge
13
deep mutational
12
net charge
12
consists sites
12
localized charge
8
increased avidity
8
electrostatic charge
8
charge interactions
8
immune escape
8
evolutionary dynamics
8

Similar Publications

Two-dimensional halide perovskites are attracting attention due to their structural diversity, improved stability, and enhanced quantum efficiency compared to their three-dimensional counterparts. In particular, Dion-Jacobson (DJ) phase perovskites exhibit superior structural stability compared to Ruddlesden-Popper phase perovskites. The inherent quantum well structure of layered perovskites leads to highly anisotropic charge transport and optical properties.

View Article and Find Full Text PDF

A set of nCN/WO composites was synthesized through a simple thermal treatment for gold recovery from the simulated effluent of a non-cyanide-based plating bath. The obtained results exhibited that all nCN/WO composites demonstrated a higher photocatalytic activity for gold recovery than their pristine components due to the formation of nanocomposites which paved a convenient pathway for charge transfer. Among all synthesized composites, the 5.

View Article and Find Full Text PDF

Mn-Doped Ni(OH)2 Nanosheets as High-Performance Electrocatalyst for 5-Hydroxymethylfurfural Electrooxidation.

Chem Asian J

January 2025

Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, school of chemistry and chemical engineering, Shanda nan Road 27, 250100, Jinan, CHINA.

Converting 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) via electrooxidation is a sustainable approach for generating high-value chemicals from biomass. This study presents Mn-doped Ni(OH)2 nanosheets as an effective electrocatalyst for HMF electrooxidation. The Mn-doped Ni(OH)2 nanosheets were synthesized through a microwave-assisted deep eutectic solvent (DES) strategy, followed by an alkaline reflux process.

View Article and Find Full Text PDF

[Not Available].

CMAJ

January 2025

Temerty Faculty of Medicine (Mehra), et département d'obstétrique et de gynécologie (Farooqi, Tunde-Byass), University of Toronto; Service d'obstétrique et de gynécologie (Sriram, Tunde-Byass), North York General Hospital, Toronto, Ont.

View Article and Find Full Text PDF

[Not Available].

CMAJ

January 2025

Rédactrice adjointe, JAMC; Schwartz/Reisman Emergency Medicine Institute (Varner); Département de médecine d'urgence, Sinai Health, Département de médecine familiale et communautaire (Varner), University of Toronto, Toronto, Ont.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!