Spintronics can add new functionalities to electronic devices by utilizing the spin degree of freedom of electrons. Investigating magnetic defects is crucial for the performance of spintronics devices. However, the effects of magnetic defects that are introduced by the presence of organic materials on their magnetic properties remain unclear. Herein, we report on a novel method using rubrene combined with Kerr microscopy that enables quantitative and direct measurements of magnetic defect density. For Co/Si(100) at a magnetic field near the coercivity value, Kerr microscopy images show a dark image with some magnetic defects. Because of domain wall motion, small patches gradually change the contrast. These magnetic defects are immovable at different magnetic fields and serve as pinning sites for domain wall motion. Experimental evidence shows that coercive force can be reduced by controlling the magnetic defect density by introducing small amounts of rubrene into the films. Furthermore, direct quantitative measurements of magnetic defects show both a one-dimensional bowing of domain walls and strong defect-domain wall interactions in the films. Based on these findings, we propose a viable strategy for reducing the coercive force of Co/Si(100) by controlling the magnetic defect density and this new information promises to be valuable for future applications of spintronics devices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp01805hDOI Listing

Publication Analysis

Top Keywords

magnetic defects
24
magnetic defect
12
defect density
12
magnetic
11
spintronics devices
8
kerr microscopy
8
measurements magnetic
8
domain wall
8
wall motion
8
coercive force
8

Similar Publications

Genetic analyses identify circulating genes related to brain structures associated with Parkinson's disease.

NPJ Parkinsons Dis

January 2025

Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China.

Magnetic resonance imaging and circulating molecular testing are potential methods for diagnosing and treating Parkinson's disease (PD). However, their relationships remain insufficiently studied. Using genome-wide association summary statistics, we found in the general population a genetic negative correlation between white matter tract mean diffusivity and PD (-0.

View Article and Find Full Text PDF

This case report provides details of the first documented case of pituitary stalk interruption syndrome (PSIS) with coexistent focal cortical dysplasia (FCD) in a young boy. The child's initial presentation was an afebrile, generalised tonic-clonic seizure associated with postictal drowsiness. During his first episode, the physical examination revealed a short, obese child with a micropenis and left cryptorchidism.

View Article and Find Full Text PDF

Solid-State Nuclear Magnetic Resonance Spectroscopy for Surface Characterization of Metal Oxide Nanoparticles: State of the Art and Perspectives.

J Am Chem Soc

January 2025

State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.

Metal oxide materials have found wide applications across diverse fields; in most cases, their functionalities are dictated by their surface structures and properties. A comprehensive understanding of the intricate surface features is critical for their further design, optimization, and applications, necessitating multi-faceted characterizations. Recent advances in solid-state nuclear magnetic resonance (ssNMR) spectroscopy have significantly extended its applications in the detailed analysis of multiple metal oxide nanoparticles, offering unparalleled atomic-level information on the surface structures, properties, and chemistries.

View Article and Find Full Text PDF

In this work, Ge vacancies and doping with transition metals (Mn and Fe) are proposed to modulate the electronic and magnetic properties of GeP monolayers. A pristine GeP monolayer is a non-magnetic two-dimensional (2D) material, exhibiting indirect gap semiconductor behavior with an energy gap of 1.34(2.

View Article and Find Full Text PDF

Magnetic resonance imaging after laparotomy of fetal evacuation in advanced abdominal pregnancy.

Radiol Case Rep

March 2025

Department of Obstetrics and Gynecology, Airlangga University, Soetomo General Hospital, Surabaya, Indonesia.

Abdominal pregnancy (AP) is a rare event of globally reported pregnancy and is significantly challenging to diagnose because of various symptoms. Therefore, we aimed to present a case of a 26-year-old female with unexpected AP of third pregnancy found during emergency fetal evacuation laparotomy. The possible scenario was found to be fetus implanted into the fibroid scar of her obstetric history, leading to complications with uterine rupture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!