Illegal transfer of wildlife has 2 main purposes: trade and scientific research. Trade is the most common, whereas scientific research is much less common and unprofitable, yet still important. Biopiracy in science is often neglected despite that many researchers encounter it during their careers. The use of illegally acquired specimens is detected in different research fields, from scientists bioprospecting for new pharmacological substances, to taxonomists working on natural history collections, to researchers working in zoos, aquariums, and botanical gardens. The practice can be due to a lack of knowledge about the permit requirements in different countries or, probably most often, to the generally high level of bureaucracy associated with rule compliance. Significant regulatory filters to avoid biopiracy can be provided by different stakeholders. Natural history collection hosts should adopt strict codes of conduct; editors of scientific publications should require authors to declare that all studied specimens were acquired legally and to cite museum catalog numbers as guarantee of best practices. Scientific societies should actively encourage publication in peer-reviewed journals of work in which specimens collected from the wild were used. The International Commission on Zoological Nomenclature could require newly designated types based on recently collected specimens to be accompanied by statements of deposition in recognized scientific or educational institutions. We also propose the creation of an online platform that gathers information about environmental regulations and permits required for scientific activities in different countries and respective responsible governmental agencies and the simplification of the bureaucracy related to regulating scientific activities. This would make regulations more agile and easier to comply with. The global biodiversity crisis means data need to be collected ever faster, but biopiracy is not the answer and undermines the credibility of science and researchers. It is critical to find a modus vivendi that promotes compliance with regulations and scientific progress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cobi.13572 | DOI Listing |
Nutr Res
December 2024
Faculty of Medicine Health and Life Science, Swansea University, Swansea, Wales, UK. Electronic address:
Limited research has examined the effect of meal composition on sleep. Based on previous research, we hypothesized that a low glycemic index (LGI) drink containing 50 g isomaltulose (Palatinose, GI = 32) would result in more N3 sleep, less rapid eye movement (REM) sleep, and better memory consolidation than a high glycemic index (HGI) drink containing 50 g glucose (GI = 100). Healthy males (n = 20) attended the laboratory on three occasions at least a week apart (one acclimatization night and two test nights).
View Article and Find Full Text PDFNutr Res
January 2025
Department of Molecular Medicine, University of Padova, Padova, Italy; IMDEA-Food, Madrid, Spain. Electronic address:
l-Theanine is a unique non-protein amino acid found abundantly in tea leaves. Interest in its potential use as a dietary supplement has surged recently, especially claims related to promoting relaxation and cognitive enhancement. This review surveys the chemistry, metabolism, and purported biological activities of l-theanine.
View Article and Find Full Text PDFJ Pediatr Nurs
January 2025
Faculty of Nursing, Yarmouk University, Irbid, Jordan. Electronic address:
Background: Type 1 diabetes is the most common endocrine health condition among youth. Healthcare professionals must consider evidence-based guidelines in managing children and adolescents with diabetic ketoacidosis (DKA). The current study aims to assess the outcomes of implementing clinical guidelines by the American Diabetes Association to manage DKA among pediatrics in an emergency department in Palestine.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Laboratory of Organic Chemistry, Tarsadia Institute of Chemical Science, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli-Mahuva Road, Tarsadi 394650 Surat Gujarat India. Electronic address:
A single molecule sensor for several analytes is indeed desired by the scientists around the world due to obvious advantages. In this report we present a new class of Lophine incorporated azo dyes that has capacity of differential colorimetric detection of several metal ions. Interestingly the sensor was found to have pH dependent selective response towards several metals.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. Electronic address:
Nitric oxide synthases (NOSs) are heme-based monooxygenases that catalyze the NADPH-dependent oxidation of L-arginine to produce NO and L-citrulline. Over the past five years, the identification and characterization of NOS homologs in cyanobacteria have significantly advanced our understanding of these enzymes. However, the precise mechanisms through which NOS-derived NO influences nitrogen metabolism remain incompletely elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!