The preparation of a water dispersible and pH responsive gelatin-F127 nanocomposite using a thermal relaxation approach is reported. The results indicated that physical properties (size and surface charge) of the gelatin-F127 nanoparticle can be tuned by varying the F127 to gelatin weight ratio. The heating (60 °C) of a saline solution (pH 7.4) containing 0.5% (w/v) of gelatin and 20% (w/w of gelatin) of F127 followed by gradual cooling at room temperature yielded nanoparticles of desired size (160 ± 40 nm), viscosity (1.36 ± cP) and surface charge (-6.47 ± 0.7 mV). The drug delivery application of nanocarriers was investigated using doxorubicin hydrochloride (Dox) as a model drug. These nanocarriers showed high encapsulation efficiency of Dox (85%), a sustained release profile, and substantial cellular internalization. Additionally, Dox loaded nanocarriers (G-Dox) exhibited prolonged residence in blood as evidenced by their longer circulation time as compared to plain Dox. Moreover, G-Dox exhibited a higher availability of the drug in plasma as compared to nonspecific organs such as the heart, liver and kidneys, highlighting its significance in reducing drug associated side effects. Finally, the enhanced toxicity of G-Dox to a WEHI-164 (fibrosarcoma) tumor model as compared to that of plain Dox under an identical dosage of 6 mg per kg body weight (IP) confirmed its potential for chemotherapy application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0bm00725k | DOI Listing |
Med Phys
January 2025
Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
Background: The spatial resolution of new, photon counting detector (PCD) CT scanners is limited by the size of the focal spot. Smaller, brighter focal spots would melt the tungsten focal track of a conventional X-ray source.
Purpose: To propose focal spot multiplexing (FSM), an architecture to improve the power of small focal spots and thereby enable higher resolution clinical PCD CT.
Microscopy (Oxf)
January 2025
Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan.
Characterizing molten corium-concrete interaction (MCCI) fuel debris in Fukushima reactors is essential to develop efficient methods for its removal. To enhance the accuracy of microscopic observation and focused ion beam (FIB) microsampling of MCCI fuel debris, we developed a three-dimentional FIB scanning electron microscopy (SEM) technique with a multiphase positional misalignment (MPPM) correction method. This system automatically aligns voxel positions, corrects contrast, and removes artifacts from a series of over 500 SEM images.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Institute of Health Sciences, China Medical University, Shenyang 110122, China. Electronic address:
A flexible cotton-based Ag/AgPO/MXene (APMX) ternary composite material was successfully synthesized, serving as a dual-function and reusable surface-enhanced Raman scattering (SERS) substrate for both sensitive detection and efficient organic dye degradation. The remarkable SERS properties of the composite can be attributed to the combined effects of electromagnetic enhancement by Ag nanoparticles (Ag NPs), charge transfer enhancement from AgPO, and the chemical enhancement mechanisms associated with MXene. When employed for the detection of crystal violet (CV), the material exhibits outstanding sensitivity, achieving a limit of detection (LOD) as low as 3.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China. Electronic address:
The limited transport of oxygen at the solid-liquid interface and the poor charge separation efficiency of single catalyst significantly impedes the generation of reactive oxygen species (ROS), thereby weakening the application potential of photocatalytic technology in water pollution control. Herein, a hollow porous photocatalytic aerogel sphere (calcium alginate/cellulose nanofibers (CA/CNF)) loaded BiOBr/TiC, combining a favourable mass transfer structure with effective catalytic centers was firstly presented. The floatability and hollow pore structure facilitated rapid O transfer via a triphase interface, thereby promoting the generation of ROS.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China. Electronic address:
The development of advanced bifunctional oxygen electrocatalysts for the oxygen reduction reactions (ORR) and oxygen evolution reactions (OER) is crucial for the practical application of zinc-air batteries (ZABs). Herein, porous carbon nanosheets integrated with abundant graphene-wrapped CoO and CoNx (CoO/CoNx-C) were successfully fabricated through a simple one-step pyrolysis. With convenient porous channel and large accessible surface, abundant CoO/CoNx species and graphene wrapping structure, CoO/CoNx-C exhibited a half-wave potential of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!