Metal-ligand cooperativity across two sites of a square planar iron(ii) complex ligated by a tetradentate PNNP ligand.

Chem Commun (Camb)

Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave, Columbus, OH 43210, USA.

Published: July 2020

An iron(ii) complex with a square planar geometry and S = 1 ground state was synthesized using a rigid tetradentate bisphosphine-bisamide [PNNP]2- ligand. This complex was shown to bind an equivalent of PMe3 to produce a five-coordinate low spin complex, and to react with two equivalents of borane reagents via addition of two B-H bonds across the metal-amide bonds in a metal-ligand cooperative fashion.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cc02152kDOI Listing

Publication Analysis

Top Keywords

square planar
8
ironii complex
8
metal-ligand cooperativity
4
cooperativity sites
4
sites square
4
planar ironii
4
complex
4
complex ligated
4
ligated tetradentate
4
tetradentate pnnp
4

Similar Publications

A Spectrochemical Series for Electron Spin Relaxation.

J Am Chem Soc

January 2025

Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.

Controlling the rate of electron spin relaxation in paramagnetic molecules is essential for contemporary applications in molecular magnetism and quantum information science. However, the physical mechanisms of spin relaxation remain incompletely understood, and new spectroscopic observables play an important role in evaluating spin dynamics mechanisms and structure-property relationships. Here, we use cryogenic magnetic circular dichroism (MCD) spectroscopy and pulse electron paramagnetic resonance (EPR) in tandem to examine the impact of ligand field (d-d) excited states on spin relaxation rates.

View Article and Find Full Text PDF

Deformation-Induced Electromagnetic Reconfigurable Square Ring Kirigami Metasurfaces.

Micromachines (Basel)

December 2024

Tianmushan Laboratory, Yuhang District, Hangzhou 311115, China.

The continuous expansion of wireless communication application scenarios demands the active tuning of electromagnetic (EM) metamaterials, which is essential for their flexible adaptation to complex EM environments. However, EM reconfigurable systems based on intricate designs and smart materials often exhibit limited flexibility and incur high manufacturing costs. Inspired by mechanical metastructures capable of switching between multistable configurations under repeated deformation, we propose a planar kirigami frequency selective surface (FSS) that enables mechanical control of its resonant frequency.

View Article and Find Full Text PDF

Superconductivity in an ultrathin multilayer nickelate.

Sci Adv

January 2025

Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.

We report the appearance of superconductivity in single-unit-cell NdNiO, exhibiting a transition temperature similar to that of thicker films. In situ synchrotron x-ray scattering performed during growth of the parent phase, NdNiO, shows that the necessary layer-by-layer deposition sequence does not follow the sequence of the formula unit but an alternate order due to the relative stability of the perovskite unit cell. We exploit this insight to grow ultrathin NdNiO heterostructures and conduct in situ studies of topotactic reduction, finding that formation of the square-planar phase occurs rapidly and is highly sensitive to reduction temperature, with small deviations from the optimum condition leading to inhomogeneity and the loss of superconductivity.

View Article and Find Full Text PDF

The search for stable compounds containing an antiaromatic cyclic 4π system is a challenge for inventive chemists that can look back on a long history. Here we report the isolation and characterization of the novel 4π-electron tetrasilacyclobutadiene, an analogue of a 4π neutral cyclobutadiene that exhibits surprising features of a Möbius-type aromatic ring. Reduction of RSiCl (R = (Pr)PCH) with KC in the presence of cycloalkyl amino-carbene (cAAC) led to the formation of corresponding silylene 1.

View Article and Find Full Text PDF

Synthesis of Imine-Phenoxy Ligated Palladium Complexes for Norbornene Homopolymerization.

Inorg Chem

December 2024

Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.

Metal complexes with tunable ligands play a crucial role in olefin polymerization and impart control over molecular weight, crystallinity, and stereoregularity. We report the single-step synthesis of imine-phenoxy ligands in excellent yields (81-93%). The identity of electronically tuned imine-phenoxy ligands was unambiguously ascertained by using a combination of spectroscopic and analytical methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!