AI Article Synopsis

  • This study explored seasonal effects on microbial communities in salt-freshwater mixing zones using 16S rDNA gene sequencing, revealing significant differences between dry and wet seasons.
  • Groundwater samples were saltier during the dry season, with increased wet season precipitation reducing seawater intrusion, which greatly impacted microbial diversity; however, no consistent change patterns were observed.
  • Proteobacteria was the dominant phylum overall, with Hydrogenophaga prevalent in the dry season and Acidovorax in the wet; dissolved oxygen and groundwater levels were key factors influencing community structure and interactions.

Article Abstract

To gain a better understanding of the microbial community in salt-freshwater mixing zones, in this study, the influence of seasonal variation on the groundwater microbial community was evaluated by high throughput 16S rDNA gene sequencing. The results showed that notable changes in microbial community occurred in a salt-freshwater mixing zone and the groundwater samples in the dry season were more saline than those in the wet season. The increase in precipitation during the wet season relieved local seawater intrusion. Microbial diversity varied greatly with seasons, while no obvious change pattern was found. Proteobacteria was identified as the dominant phylum in all samples. The genus Hydrogenophaga dominated in the dry season, while the genus Acidovorax dominated in the wet season. Dissolved oxygen affected the diversity of the microbial communities during the dry and wet season, while groundwater level had a strong influence on the structure of microbial communities. Phylogenetic molecular network analysis of the microbial communities indicated that increased seawater intrusion led to a more compact microbial network and strengthening the groundwater microbial interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2020.110969DOI Listing

Publication Analysis

Top Keywords

microbial community
16
wet season
16
groundwater microbial
12
salt-freshwater mixing
12
microbial communities
12
microbial
10
community salt-freshwater
8
mixing zone
8
dry wet
8
dry season
8

Similar Publications

Article Synopsis
  • The emergence of Next Generation Sequencing (NGS) technology has transformed clinical diagnostics, providing extensive microbiome data for personalized medicine.
  • Despite its potential, microbiome data's complexity and variability pose challenges for traditional statistical and machine learning approaches, including deep learning.
  • The paper presents a novel feature engineering technique that combines two data feature sets, significantly improving the Deep Neural Network's performance in colorectal cancer detection, raising the Area Under the Curve (AUC) from 0.800 to 0.923, thus enhancing microbiome data analysis and disease detection capabilities.
View Article and Find Full Text PDF

Comparative analysis of antibiotic resistance genes between fresh pig manure and composted pig manure in winter, China.

PLoS One

January 2025

School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng Key Laboratory of Food Composition and Quality Assessment, Kaifeng, China.

Antibiotic resistance is a critical global public health issue. The gut microbiome acts as a reservoir for numerous antibiotic resistance genes (ARGs), which influence both existing and future microbial populations within a community or ecosystem. However, the differences in ARG expression between fresh and composted feces remain poorly understood.

View Article and Find Full Text PDF

Cyanobacteria and Chloroflexota cooperate to structure light-responsive biofilms.

Proc Natl Acad Sci U S A

February 2025

Department of Biosphere Sciences and Engineering, Carnegie Institution for Science, Stanford, CA 94305.

Microbial mats are stratified communities often dominated by unicellular and filamentous phototrophs within an exopolymer matrix. It is challenging to quantify the dynamic responses of community members in situ as they experience steep gradients and rapid fluctuations of light. To address this, we developed a binary consortium using two representative isolates from hot spring mats: the unicellular oxygenic phototrophic cyanobacterium OS-B' (Syn OS-B') and the filamentous anoxygenic phototroph MS-CIW-1 (Chfl MS-1).

View Article and Find Full Text PDF

Microbiota in the gastrointestinal tract (GIT) consisting of the rumen and hindgut (the small intestine, cecum and colon) in dairy calves play a vital role in their growth and development. This review discusses the development of dairy calf intestinal microbiomes with an emphasis on the impact that husbandry and rearing management have on microbiome development, health and growth of pre-weaned dairy calves. The diversity and composition of the microbes that colonize the lower GIT (small and large intestine) can have a significant impact on the growth and development of the calf, through influence on nutrient metabolism, immune modulation, resistance or susceptibility to infection, production outputs and behaviour modification in adult life.

View Article and Find Full Text PDF

Prebiotics, traditionally linked to gut health, are increasingly recognized for their systemic benefits, influencing multiple organ systems through interactions with the gut microbiota. Compounds like inulin, fructooligosaccharides (FOS), and galactooligosaccharides (GOS) enhance short-chain fatty acid (SCFA) production, benefiting neurocognitive health, cardiovascular function, immune modulation, and skin integrity. Advances in biotechnology, including deep eutectic solvents (DES) for extraction and machine learning (ML) for personalized formulations, have expanded prebiotic applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!