Background: The ultimate goal of artificial intelligence (AI) is to develop technologies that are best able to serve humanity. This will require advancements that go beyond the basic components of general intelligence. The term "intelligence" does not best represent the technological needs of advancing society, because it is "wisdom", rather than intelligence, that is associated with greater well-being, happiness, health, and perhaps even longevity of the individual and the society. Thus, the future need in technology is for artificial wisdom (AW).
Methods: We examine the constructs of human intelligence and human wisdom in terms of their basic components, neurobiology, and relationship to aging, based on published empirical literature. We review the development of AI as inspired and driven by the model of human intelligence, and consider possible governing principles for AW that would enable humans to develop computers which can operationally utilize wise principles and result in wise acts. We review relevant examples of current efforts to develop such wise technologies.
Results: AW systems will be based on developmental models of the neurobiology of human wisdom. These AW systems need to be able to a) learn from experience and self-correct; b) exhibit compassionate, unbiased, and ethical behaviors; and c) discern human emotions and help the human users to regulate their emotions and make wise decisions.
Conclusions: A close collaboration among computer scientists, neuroscientists, mental health experts, and ethicists is necessary for developing AW technologies, which will emulate the qualities of wise humans and thus serve the greatest benefit to humanity. Just as human intelligence and AI have helped further the understanding and usefulness of each other, human wisdom and AW can aid in promoting each other's growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7942180 | PMC |
http://dx.doi.org/10.1017/S1041610220000927 | DOI Listing |
Oper Neurosurg (Hagerstown)
July 2024
Neurosurgical Simulation and Artificial Intelligence Learning Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal , Quebec , Canada.
Background And Objectives: Subpial corticectomy involving complete lesion resection while preserving pial membranes and avoiding injury to adjacent normal tissues is an essential bimanual task necessary for neurosurgical trainees to master. We sought to develop an ex vivo calf brain corticectomy simulation model with continuous assessment of surgical instrument movement during the simulation. A case series study of skilled participants was performed to assess face and content validity to gain insights into the utility of this training platform, along with determining if skilled and less skilled participants had statistical differences in validity assessment.
View Article and Find Full Text PDFEur Radiol Exp
January 2025
Computational Clinical Imaging Group (CCIG), Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
Good practices in artificial intelligence (AI) model validation are key for achieving trustworthy AI. Within the cancer imaging domain, attracting the attention of clinical and technical AI enthusiasts, this work discusses current gaps in AI validation strategies, examining existing practices that are common or variable across technical groups (TGs) and clinical groups (CGs). The work is based on a set of structured questions encompassing several AI validation topics, addressed to professionals working in AI for medical imaging.
View Article and Find Full Text PDFNanomicro Lett
January 2025
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.
The proliferation of wearable biodevices has boosted the development of soft, innovative, and multifunctional materials for human health monitoring. The integration of wearable sensors with intelligent systems is an overwhelming tendency, providing powerful tools for remote health monitoring and personal health management. Among many candidates, two-dimensional (2D) materials stand out due to several exotic mechanical, electrical, optical, and chemical properties that can be efficiently integrated into atomic-thin films.
View Article and Find Full Text PDFEur Radiol Exp
January 2025
St Vincent's University Hospital, Dublin, Ireland.
Background: The large language model ChatGPT can now accept image input with the GPT4-vision (GPT4V) version. We aimed to compare the performance of GPT4V to pretrained U-Net and vision transformer (ViT) models for the identification of the progression of multiple sclerosis (MS) on magnetic resonance imaging (MRI).
Methods: Paired coregistered MR images with and without progression were provided as input to ChatGPT4V in a zero-shot experiment to identify radiologic progression.
Sleep Breath
January 2025
Department of Internal Medicine II (Cardiology, Pneumology, and Intensive Care), University Medical Centre Regensburg, Regensburg, Germany.
Purpose: In heart failure (HF) and chronic obstructive pulmonary disease (COPD) populations, sleep-disordered breathing (SDB) is associated with impaired health outcomes. We evaluated whether in patients with HF, concomitant HF and COPD or COPD, the number of hospitalizations would be reduced in the year after testing for SDB with and without treatment initiation compared to the year before.
Methods: We performed a multicentre retrospective study of 390 consecutive sleep-clinic patients who had a primary diagnosis of chronic HF, HF and COPD or COPD and a secondary diagnosis of SDB.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!