Solution-based, anionic doping represents a convenient strategy with which to improve upon the conductivity of candidate anode materials such as Li Ti O (LTO). As such, novel synthetic hydrothermally-inspired protocols have primarily been devised herein, aimed at the large-scale production of unique halogen-doped, micron-scale, three-dimensional, hierarchical LTO flower-like motifs. Although fluorine (F) doping has been explored, the use of chlorine (Cl) dopants is the primary focus here. Several experimental variables, such as dopant amount, lithium hydroxide concentration, and titanium butoxide purity, were probed and perfected. Furthermore, the Cl doping process did not damage the intrinsic LTO morphology. The analysis, based on interpreting a compilation of SEM, XRD, XPS, and TEM-EDS results, was used to determine an optimized dopant concentration of Cl. Electrochemical tests demonstrated an increased capacity via cycling of 12 % for a Cl-doped sample as compared with pristine LTO. Moreover, the Cl-doped LTO sample described in this study exhibited the highest discharge capacity yet reported at an observed rate of 2C for this material at 143mAh g . Overall, these data suggest that the Cl dopant likely enhances not only the ion transport capabilities, but also the overall electrical conductivity of our as-prepared structures. To help explain these favorable findings, theoretical DFT calculations were used to postulate that the electronic conductivity and Li diffusion were likely improved by the presence of increased Ti ion concentration coupled with widening of the Li migration channel.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202002489 | DOI Listing |
Nat Med
January 2025
Department of Medicine-Medical Oncology, University of Colorado Cancer Center, Denver, CO, USA.
Effective targeting of somatic cancer mutations to enhance the efficacy of cancer immunotherapy requires an individualized approach. Autogene cevumeran is a uridine messenger RNA lipoplex-based individualized neoantigen-specific immunotherapy designed from tumor-specific somatic mutation data obtained from tumor tissue of each individual patient to stimulate T cell responses against up to 20 neoantigens. This ongoing phase 1 study evaluated autogene cevumeran as monotherapy (n = 30) and in combination with atezolizumab (n = 183) in pretreated patients with advanced solid tumors.
View Article and Find Full Text PDFJ Shoulder Elbow Surg
January 2025
Department of Orthopedic Surgery, Auckland City Hospital, Grafton, Auckland, New Zealand.
Hypothesis And Background: As the incidence of reverse total shoulder arthroplasty (RTSA) continues to rise, better understanding of the long-term risks and complications is necessary to determine the best choice of implant. The majority (75%) of RTSA performed in New Zealand use either SMR (Systema Multiplana Randelli, Lima-LTO, Italy) or Delta Xtend (DePuy Synthes, USA). The aim of this registry-based study was to compare implant survival, risk of revision and reasons for revision between the two most frequently used RTSA prostheses: SMR and Delta Xtend.
View Article and Find Full Text PDFCancer Cell
December 2024
Genome Institute of Singapore, Agency for Science, Technology, and Research (A(∗)STAR), 60 Biopolis Street, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore. Electronic address:
Successful immunotherapy relies on both intratumoral and systemic immunity, which is yet to be achieved for most patients with cancer. Here, we identify P4HA1, encoding prolyl 4-hydroxylase 1, as a crucial regulator of CD8 T cell differentiation strongly upregulated in tumor-draining lymph nodes (TDLNs) and hypoxic tumor microenvironment. P4HA1 accumulates in mitochondria, disrupting the tricarboxylic acid (TCA) cycle through aberrant α-ketoglutarate and succinate metabolism, promoting mitochondria unfitness and exhaustion while suppressing progenitor expansion.
View Article and Find Full Text PDFDiscov Nano
December 2024
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, People's Republic of China.
LiTiO (LTO) batteries are known for safety and long lifespan due to zero-strain and stable lattice. However, their low specific capacity and lithium-ion diffusion limit practical use. This study explored modifying LTO through yttrium doping by hydrothermal method to form LiYTiO nanoparticles.
View Article and Find Full Text PDFPurpose: The purpose of this study was to determine the effects of medial opening low tibial osteotomy (LTO) on lower limb alignment, including the knee joint, 1 year after low tibial osteotomy.
Methods: This study included 20 legs of 20 patients (mean age, 66.8 ± 5.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!