As an emerging optical material, perovskite nanocrystals (NCs) exhibit excellent optoelectronic properties and show great potential for various optoelectronic applications. However, the inherent inferior stability against moisture, oxygen, light and heat limit their practical application. As well, the exploration and development of perovskite NCs with novel properties and functions are new challenges. To achieve these goals, the integration and encapsulation of perovskite NCs with multifunctional metal-organic frameworks (MOFs) to form perovskite NC@MOF composites, is a promising strategy for enhancing the stability and broadening the application scope. In this minireview, we summarize and discuss the synthesis strategies and functional mechanisms of perovskite NC@MOF composites, along with applications of light emitting diodes (LED), information security, photocatalysis, sensing, and detection. We further briefly point out the current challenges as well as the future opportunities for the emerged composite materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202006169 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!