Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bacillus anthracis, the causative agent for anthrax, is a dangerous pathogen to humans and has a history as a bioterrorism agent. While sampling methods have been developed and evaluated for characterizing and clearing contaminated indoor sites, the performance of these sampling methods is unknown for use in outdoor environments. This paper presents surface sampling data for Bacillus atrophaeus spores, a surrogate for B. anthracis, from a 210-day outdoor study that evaluated the detection and recovery of spores using five different sampling methods as follows: sponge sticks, 37-mm vacuum filter cassettes, residential wet vacuums, robotic floor cleaners, and grab samples of soil, leaves, and grass. The spores were applied by spraying a liquid suspension onto the surfaces. Both asphalt and concrete surfaces were sampled by all the surface sampling methods, excluding grab sampling. Stainless steel coupons placed outdoors were additionally sampled using sponge sticks. Sampling methods differed in their ability to collect detectable spores over the duration of the study. The 37-mm vacuums and sponge sticks consistently detected spores on asphalt through day 37 and robots through day 99. The wet vacuums detected spores on asphalt for days 1 and 4, but not again until day 210. On concrete, all samplers detected spores until day 210 except for sponge stick samplers that detected spores only up until the day 99 time point. For all sampling methods, spore recoveries were higher from concrete than from asphalt surfaces. There was no statistically significant difference in recoveries of sponge sticks and 37-mm vacuums from either asphalt or concrete surfaces. Processing of grab samples was challenging due to non-target background microorganisms resulting in high detection limits for the samples.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7489310 | PMC |
http://dx.doi.org/10.1007/s10661-020-08434-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!