Strategies to improve the fluorescent signal of the tripartite sfGFP system.

Acta Biochim Biophys Sin (Shanghai)

Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Department of Infectious Diseases, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.

Published: September 2020

Bimolecular fluorescence complementation (BiFC) is a popular method used to detect protein-protein interactions. For a BiFC assay, a fluorescent protein is usually split into two parts, and the fluorescence is recovered upon the interaction between the fused proteins of interest. As an elegant extension of BiFC, a tripartite superfold green fluorescent protein (sfGFP) system that has the advantages of low background fluorescence and small fusion tag size has been developed. However, the tripartite system exhibits a low fluorescence signal in some cases. To address this problem, we proposed to increase the affinity between the two parts, G1-9 and G11, of the tripartite system by adding affinity pairs. Among the three affinity pairs tested, LgBiT-HiBiT improved both the signal and signal-to-noise (S/N) ratio to the greatest extent. More strikingly, the direct covalent fusion of G11 to G1-9, which converted the tripartite system into a new bipartite system, enhanced the S/N ratio from 20 to 146, which is superior to the bipartite sfGFP system split at 157/158 or 173/174. Our results implied that the 10th β-strand of sfGFP has a low affinity and a good recovery efficiency to construct a robust BiFC system, and this concept might be applied to other fluorescent proteins with similar structure to construct new BiFC systems.

Download full-text PDF

Source
http://dx.doi.org/10.1093/abbs/gmaa073DOI Listing

Publication Analysis

Top Keywords

sfgfp system
12
tripartite system
12
system
8
fluorescent protein
8
affinity pairs
8
s/n ratio
8
tripartite
5
bifc
5
strategies improve
4
fluorescent
4

Similar Publications

Visual and High-Efficiency Secretion of SARS-CoV-2 Nanobodies with .

Biomolecules

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China.

Nanobodies have gained attention as potential therapeutic and diagnostic agents for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due to their ability to bind and neutralize the virus. However, rapid, scalable, and robust production of nanobodies for SARS-CoV-2 remains a crucial challenge. In this study, we developed a visual and high-efficiency biomanufacturing method for nanobodies with by fusing the super-folder green fluorescent protein (sfGFP) to the N-terminus or C-terminus of the nanobody.

View Article and Find Full Text PDF

Biosensors have become powerful tools for real-time monitoring of specific small molecules and precise control of gene expression in biological systems. High-throughput sensors for 1, 4-butanediamine biosynthesis can greatly improve the screening efficiency of high-yielding 1, 4-butanediamine strains. However, the strategies for adapting the characteristics of biosensors are still rarely studied, which limits the applicability of 1, 4-butanediamine biosensors.

View Article and Find Full Text PDF

RNA toehold switches are powerful tools that can be used as biosensors to detect nearly any RNA sequence. In the presence of a specific RNA trigger, the toehold switch allows translation of a reporter protein. Toehold switches expressed in cell-free expression systems have been used as biosensors for several viruses and bacterial RNAs.

View Article and Find Full Text PDF

Efficient methods and universal DNA elements are eagerly required for the expression of proteins and the production of target chemicals in synthetic biology and metabolic engineering. This paper develops a customized-design approach by utilizing the host-independent T7 expression system (HITES), which facilitates the rational design and rapid construction of T7 expression systems. Firstly, the EL (Upper-limit value of initial enzyme activity) value is discovered to play a pivotal factor in the successful construction of the T7 expression system, different host strains exhibit varying EL values, and this study presents a method to measure the EL values.

View Article and Find Full Text PDF

A single vector system for tunable and homogeneous dual gene expression in Escherichia coli.

Sci Rep

January 2025

Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia.

Expression of recombinant genes can be controlled using inducible promoters. However, the most commonly used IPTG- and arabinose-inducible promoters result in an 'all-or-nothing' response, leading to fully induced and uninduced bacterial subpopulations. Here, we investigate whether appropriate modifications to these promoter systems can be combined into a single vector system, enabling homogenous expression of two genes of interest that can be precisely tuned using inducer concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!