Covering: up to the beginning of 2020Enzymes depending on cofactors are essential in many biosynthetic pathways of natural products. They are often involved in key steps: catalytic conversions that are difficult to achieve purely with synthetic organic chemistry. Hence, cofactor-dependent enzymes have great potential for biocatalysis, on the condition that a corresponding cofactor regeneration system is available. For some cofactors, these regeneration systems require multiple steps; such complex enzyme cascades/multi-enzyme systems are (still) challenging for in vitro biocatalysis. Further, artificial cofactor analogues have been synthesised that are more stable, show an altered reaction range, or act as inhibitors. The development of bio-orthogonal systems that can be used for the production of modified natural products in vivo is an ongoing challenge. In light of the recent progress in this field, this review aims to provide an overview of general strategies involving enzyme cofactors, cofactor analogues, and regeneration systems; highlighting the current possibilities for application of enzymes using some of the most common cofactors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0np00004c | DOI Listing |
Int J Biol Macromol
January 2025
Key Laboratory of Organosilicon Chemistry and Materials Technology, Ministry of Education; College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China. Electronic address:
Keto reductases are crucial NAD(P)H-dependent enzymes used for the enantioselective synthesis of alcohols from prochiral ketones. Typically, the NADPH cofactor is regenerated through a second enzyme and/or substrate. However, photocatalytic cofactor regeneration using water as a sacrificial electron and hydrogen donor presents a promising alternative, albeit a challenging one.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Biotechnology, Jiangnan University, Wuxi 214122, China. Electronic address:
7β-Hydroxysteroid dehydrogenase (7β-HSDH) catalyzes the reversible reaction between 7-ketolithocholic acid (7K-LCA) and ursodeoxycholic acid (UDCA). However, its much lower forward reaction activity led to the unsatisfactory UDCA production. Here, by autodocking 7K-LCA and UDCA into the structure of Hyphomicrobium sp.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning, 116024, China.
Cofactors such as nicotinamide adenine dinucleotide (NADH) and its phosphorylated form (NADPH) play a crucial role in natural enzyme-catalyzed reactions for the synthesis of chemicals. However, the stoichiometric supply of NADH for artificial synthetic processes is uneconomical. Here, inspired by the process of cofactor NADPH regeneration in photosystem I (PSI), catalyst-modified photocathodes are constructed on the surface of polythiophene-based semiconductors (PTTH) via self-assembly for photoelectrochemical catalytic NADH regeneration.
View Article and Find Full Text PDFPhotochem Photobiol Sci
December 2024
Biophysical Chemistry and Diagnostics, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany.
Flavin-dependent halogenases (FDHs) are promising candidates for the sustainable production of halogenated organic molecules by biocatalysis. FDHs require only oxygen, halide and a fully reduced flavin adenine dinucleotide (FADH) cofactor to generate the reactive HOX that diffuses 10 Å to the substrate binding pocket and enables regioselective oxidative halogenation. A key challenge for the application of FDHs is the regeneration of the FADH.
View Article and Find Full Text PDFAging Cell
December 2024
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!