Understanding ring-closing and racemization to prepare α-amino acid NCA and NTA monomers: a DFT study.

Phys Chem Chem Phys

Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China. and Department of Radiology, Jiulongpo People's Hospital, Chongqing 400050, China and Innovation Center for Minimally Invasive Techniques and Devices, Zhejiang University, Hangzhou 310016, China.

Published: July 2020

Polypeptides and polypeptoids are promising materials in biomedical applications bearing α-amino acid repeating units, which are prepared from ring-opening polymerizations of α-amino acid N-carboxyanhydride (NCA) or N-thiocarboxyanydride (NTA) monomers. Detailed studies on monomer synthetic routes are essential to explore new α-amino acid NCA and NTA monomers as well as the corresponding poly(α-amino acid) materials. In this contribution, density functional theory (DFT) is applied to investigate the mechanism of the Leuchs approach including two possible pathways, precursor structure and racemization in the ring-closing reaction. According to DFT calculations, pathway 2 is preferred with lower ΔG than pathway 1, and the rate-determining step is recognized as an SN2 substitution with releasing equivalent halogenated hydrocarbon, which explains our experimental observations. Racemization results from the reaction between the NTA monomer and a strong protonic acid, which can be suppressed by low temperature and short reaction time. Racemization is inhibited by steric hindrance in those NTAs of α-amino acids containing high bulkiness at the β-carbon, such as leucine-NTA.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp01174fDOI Listing

Publication Analysis

Top Keywords

α-amino acid
16
nta monomers
12
acid nca
8
nca nta
8
acid
6
α-amino
5
understanding ring-closing
4
racemization
4
ring-closing racemization
4
racemization prepare
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!